《广西壮族自治区北海市市级名校2023年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广西壮族自治区北海市市级名校2023年十校联考最后数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1直线AB、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定2已知:如图,在平面直角坐标系xOy中,等边AOB的边长为6,点C在边OA上,点D在边AB上,且OC3BD,反比例函数y(k0
2、)的图象恰好经过点C和点D,则k的值为()ABCD3如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )ABCD4用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方程( )ABCD5如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( ) (A)33 (B)34 (C)35 (D)366从一个边长为3cm的大立方体
3、挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()ABCD7某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()A0.637105 B6.37106 C63.7107 D6.371078石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )A3.410-9mB0.3410-9mC3.410-10mD3.410-11m9如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )A米B米C米D米10计算的结果是( )ABCD二、填空题(本大题共6个小题,每小题3
4、分,共18分)11如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为_m112如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点若AB4,BC3,则AE+EF的长为_13已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为_.14如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时
5、针旋转90得到线段OB,则点B所在图象的函数表达式为_15函数中自变量的取值范围是_16对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,=0.02;机床乙:=10,=0.06,由此可知:_(填甲或乙)机床性能好.三、解答题(共8题,共72分)17(8分)如图,已知等腰三角形ABC的底角为30,以BC为直径的O与底边AB交于点D,过点D作DEAC,垂足为E(1)证明:DE为O的切线;(2)连接DC,若BC4,求弧DC与弦DC所围成的图形的面积18(8分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).(1)求该抛物线的函数表达式.(2)求直线A
6、B关于x轴对称的直线的函数表达式.(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM PN时,求点P的横坐标的取值范围.19(8分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;(3)连接ME,并直接写出EM的长20(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30,然后
7、向山脚直行60米到达C处,再测得山顶A的仰角为45,求山高AD的长度(测角仪高度忽略不计)21(8分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究
8、表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?22(10分)如图,在RtABC中ABC=90,AC的垂直平分线交BC于D点,交AC于E点,OC=OD(1)若,DC=4,求AB的长;(2)连接BE,若BE是DEC的外接圆的切线,求C的度数23(12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”(1)概念理解:如图1,在ABC中,AC6,BC3,ACB30,试判断ABC是否是”等高底”三角形,请说明理由(1)问题探究:如图1,ABC是“等高底”三角形,
9、BC是”等底”,作ABC关于BC所在直线的对称图形得到ABC,连结AA交直线BC于点D若点B是AAC的重心,求的值(3)应用拓展:如图3,已知l1l1,l1与l1之间的距离为1“等高底”ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍将ABC绕点C按顺时针方向旋转45得到ABC,AC所在直线交l1于点D求CD的值24在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解
10、析】根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AOD,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答2、A【解析】试题分析:过点C作CEx轴于点E,过点D作DFx轴于点F,如图所示设BD=a,则OC=3aAOB为边长为1的等边三角形,COE=DBF=10,OB=1在RtCOE中,COE=10,CEO=90,OC=3a,OCE=30,OE=a,CE= = a,点C(a, a)同理,可求出点D的坐标为(1a,a)反比例函数(k0)的图象恰好经过点C和点D,k=aa=(1a)a
11、,a=,k=故选A3、A【解析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式【详解】解:大正方形的面积-小正方形的面积=,矩形的面积=,故,故选:A【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键4、C【解析】设用张铝片制作瓶身,则用张铝片制作瓶底,可作瓶身16x个,瓶底个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用张铝片制作瓶身,则用张铝片制作瓶底,依题意可列方程故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.5、D【解析】试题分析:过点E作EMOA,垂足为M,A(
12、1,0),B(0,2),OA-1,OB=2,又AOB=90,AB=,AB/CD,ABO=CBG,BCG=90,BCGAOB,BC=AB=,CG=2,CD=AD=AB=,DG=3,DE=DG=3,AE=4,BAD=90,EAM+BAO=90,BAO+ABO=90,EAM=ABO,又EMA=90,EAMABO,即,AM=8,EM=4,AM=9,E(9,4),k=49=36;故选D考点:反比例函数综合题6、C【解析】左视图就是从物体的左边往右边看小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误
13、,所以C正确故此题选C7、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】0.00000637的小数点向右移动6位得到6.37所以0.00000637用科学记数法表示为6.37106,故选B【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将111111111134用科学记数法表示,故选C考点:科学记数法9、A【解析】利用锐角三角函数关系即可求出小刚上升了的
14、高度【详解】在RtAOB中,AOB=90,AB=300米,BO=ABsin=300sin米故选A【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键10、D【解析】根据同底数幂的乘除法运算进行计算.【详解】3x2y2x3y2xy36x5y4xy36x4y.故答案选D.【点睛】本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.4【解析】由概率估计图案在整副画中所占比例,再求出图案的面积.【详解】估计宣传画上世界杯图案的面积约为310.4=
15、1.4m1故答案为1.4【点睛】本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.12、1【解析】先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果【详解】解:点E,F分别是的中点,FE是BCD的中位线, .又E是BD的中点,RtABD中,故答案为1【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半13、【解析】试题分析:当n=3时,A=0.3178,B=1,AB;当n=4时,A=0.2679,B=0.414
16、2,AB;当n=5时,A=0.2631,B=0.3178,AB;当n=6时,A=0.2134,B=0.2679,AB;以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n3时,A、B的关系始终是AB.14、【解析】点A是反比例函数的图象上的一个动点,设A(m,n),过A作ACx轴于C,过B作BDx轴于D,AC=n,OC=m,ACO=ADO=90,AOB=90,CAO+AOC=AOC+BOD=90,CAO=BOD,在ACO与ODB中,ACO=ODB,CAO=BOD,AO=BO,ACOODB,AC=OD=n,CO=BD=m,B(n,m),mn=2,n(m)=2,点B所在图象的
17、函数表达式为,故答案为:15、x2且x1【解析】解:根据题意得:且x10,解得:且 故答案为且16、甲【解析】试题分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案试题解析:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好故答案为甲考点:1.方差;2.算术平均数三、解答题(共8题,共72分)17、(1)详见解析;(2).【解析】(1)连接OD,由平行线的判定定理可得ODAC,利用平行线的性质得ODE=DEA=90,可得DE为O的切线;(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可【详解】解:(1)证明:连接OD,ODOB
18、,ODBB,ACBC,AB,ODBA,ODAC,ODEDEA90,DE为O的切线;(2)连接CD,A30,ACBC,BCA120,BC为直径,ADC90,CDAB,BCD60,ODOC,DOC60,DOC是等边三角形,BC4,OCDC2,SDOCDC,弧DC与弦DC所围成的图形的面积【点睛】本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.18、(1)(2)(3)【解析】(1)根据待定系数法,可得二次函数的解析式;(2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反
19、数,可得答案;(3)根据PMPN,可得不等式,利用绝对值的性质化简解不等式,可得答案【详解】(1)将A(1,1),B(2,5)代入函数解析式,得:,解得:,抛物线的解析式为y=x22x3;(2)设AB的解析式为y=kx+b,将A(1,1),B(2,5)代入函数解析式,得:,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=(x+1),化简,得:y=x1;(3)设M(n,n22n3),N(n,n+1),PMPN,即|n22n3|n+1|(n+1)(n-3)|-|n+1|1,|n+1|(|n-3|-1)1|n+1|1,|n-3|-11,|n-3|1,1n-31,解得:2n
20、2故当PMPN时,求点P的横坐标xP的取值范围是2xP2【点睛】本题考查了二次函数综合题解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式19、(1)画图见解析;(2)画图见解析;(3)【解析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得EM=.【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.20、
21、30米【解析】设ADxm,在RtACD中,根据正切的概念用x表示出CD,在RtABD中,根据正切的概念列出方程求出x的值即可【详解】由题意得,ABD30,ACD45,BC60m,设ADxm,在RtACD中,tanACD,CDADx,BDBC+CDx+60,在RtABD中,tanABD,米,答:山高AD为30米【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键21、(1);(2)至少需要30分钟后生才能进入教室(3)这次消毒是有效的【解析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药
22、物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于10就有效【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k10)代入(8,6)为6=8k1k1= 设药物燃烧后y关于x的函数关系式为y=(k20)代入(8,6)为6=,k2=48药物燃烧时y关于x的函数关系式为(0x8)药物燃烧后y关于x的函数关系式为(x8) (2)结合实际,令中y1.6得x30即从消毒开始,至少需要30分钟后生才能进入教室 (3)把y=3代入
23、,得:x=4把y=3代入,得:x=16164=12所以这次消毒是有效的【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式22、(1);(2)30 【解析】(1)由于DE垂直平分AC,那么AE=EC,DEC=90,而ABC=DEC=90,C=C,易证,ABCDEC,A=CDE,于是sinCDE=sinA,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于DEC=90,那么EDC+C=90,又BE是切线,那么BEO=90,于是EO
24、B+EBC=90,而BE是直角三角形斜边上的中线,那么BE=CE,于是EBC=C,从而有EOB=EDC,又OE=OD,易证DEO是等边三角形,那么EDC=60,从而可求C【详解】解:(1)AC的垂直平分线交BC于D点,交AC于E点,DEC=90,AE=EC,ABC=90,C=C,A=CDE,ABCDEC,sinCDE=,AB:AC=DE:DC,DC=4,ED=3,DE=,AC=6,AB:6=:4,AB=;(2)连接OE,DEC=90,EDC+C=90,BE是O的切线,BEO=90,EOB+EBC=90,E是AC的中点,ABC=90,BE=EC,EBC=C,EOB=EDC,又OE=OD,DOE是
25、等边三角形,EDC=60,C=30【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质解题的关键是连接OE,构造直角三角形23、(1)ABC是“等高底”三角形;(1);(3)CD的值为,1,1 【解析】(1)过A作ADBC于D,则ADC是直角三角形,ADC=90,根据30所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.(1)点B是的重心,得到设 则 根据勾股定理可得即可求出它们的比值.(3)分两种情况进行讨论:当时和当时.【详解】(1)ABC是“等高底”三角形;理由:如图1,过A作ADBC于D,则ADC是直角三角形,ADC
26、=90,ACB=30,AC=6, AD=BC=3,即ABC是“等高底”三角形;(1)如图1,ABC是“等高底”三角形,BC是“等底”, ABC关于BC所在直线的对称图形是 ,ADC=90,点B是的重心, 设 则 由勾股定理得 (3)当时,如图3,作AEBC于E,DFAC于F,“等高底”ABC的“等底”为BC,l1l1,l1与l1之间的距离为1,. BE=1,即EC=4, ABC绕点C按顺时针方向旋转45得到ABC,DCF=45,设 l1l1, 即 如图4,此时ABC等腰直角三角形,ABC绕点C按顺时针方向旋转45得到,是等腰直角三角形, 当时,如图5,此时ABC是等腰直角三角形,ABC绕点C按
27、顺时针方向旋转45得到ABC, 如图6,作于E,则 ABC绕点C按顺时针方向旋转45,得到时,点A在直线l1上,l1,即直线与l1无交点,综上所述,CD的值为【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.24、每台电脑0.5万元;每台电子白板1.5万元【解析】先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.【详解】设每台电脑x万元,每台电子白板y万元根据题意,得: 解得,答:每台电脑0.5万元,每台电子白板1.5万元【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组