《广东省黄埔区广附市级名校2023年中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省黄埔区广附市级名校2023年中考数学模拟试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1某商品价格为元,降价10后,又降价10,因销售量猛增,商店决定再提价20,提价后这种商品的价格为( )A0.96元B0.972元C1.08元D元2如图,点P(x,y)(x0)是反比例函数y=(k0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若OPA的面积为S,则当x增大时,S
2、的变化情况是()AS的值增大BS的值减小CS的值先增大,后减小DS的值不变3下列几何体中,俯视图为三角形的是( )ABCD4下列调查中,最适合采用普查方式的是()A对太原市民知晓“中国梦”内涵情况的调查B对全班同学1分钟仰卧起坐成绩的调查C对2018年央视春节联欢晚会收视率的调查D对2017年全国快递包裹产生的包装垃圾数量的调查5函数y=中自变量x的取值范围是Ax0Bx4Cx4Dx46下列各式中计算正确的是ABCD7若关于x的方程 是一元二次方程,则m的取值范围是( )A.B.CD.8如图,由四个正方体组成的几何体的左视图是( )ABCD9如果(,均为非零向量),那么下列结论错误的是()A/B
3、-2=0C=D10为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.56.5组别的频率是( )A0.1B0.2C0.3D0.4二、填空题(本大题共6个小题,每小题3分,共18分)11如图,把一块含有45角的直角三角板的两个顶点放在直尺的对边上.如果1=20,那么2的度数是_.12如图,在扇形OAB中,O=60,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,OB上,则图中阴影部分的面积为_13如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此
4、,第n个图案是由 个组成的14如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k0,x0)的图象过点B,E若AB=2,则k的值为_ 15若关于x的方程的解是正数,则m的取值范围是_16若mn=4,则2m24mn+2n2的值为_三、解答题(共8题,共72分)17(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=1在销售过程中,每天
5、还要支付其他费用450元求出y与x的函数关系式,并写出自变量x的取值范围求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式当销售单价为多少元时,该公司日获利最大?最大获利是多少元?18(8分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B已知ABMN,在A点测得MAB60,在B点测得MBA45,AB600米 (1)求点M到AB的距离;(结果保留根号)(2)在B点又测得NBA53,求MN的长(结果精确到1米)(参考数据:1.732,sin530.8,cos530.6,tan531.33,cot530.75)19(8分)甲、乙两人分别站在相距6米的A、B
6、两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示)求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度20(8分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率21(8分)科技改变世界2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,
7、自动归队取包裹没电的时候还会自己找充电桩充电某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?22(10分)如图,AB为O直径,过O外的点D作DEOA于点E,射线DC切O于点C、交AB的延长线于点P,连接AC交DE于点F,作CHAB于
8、点H(1)求证:D=2A;(2)若HB=2,cosD=,请求出AC的长23(12分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布
9、”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率24鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个设销售价格每个降低x元(x为偶数),每周销售为y个(1)直接写出销售量y个与降价x元之间的函数关系式; (2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元? (3)若商户计划下周利润不低于5200元的情况下
10、,他至少要准备多少元进货成本?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】提价后这种商品的价格=原价(1-降低的百分比)(1-百分比)(1+增长的百分比),把相关数值代入求值即可【详解】第一次降价后的价格为a(1-10%)=0.9a元,第二次降价后的价格为0.9a(1-10%)=0.81a元,提价20%的价格为0.81a(1+20%)=0.972a元,故选B【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键2、D【解析】作PBOA于B,如图,根据垂径定理得到OB=AB,则SPO
11、B=SPAB,再根据反比例函数k的几何意义得到SPOB=|k|,所以S=2k,为定值【详解】作PBOA于B,如图,则OB=AB,SPOB=SPABSPOB=|k|,S=2k,S的值为定值故选D【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|3、C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不
12、符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键4、B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普
13、查5、B【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解【详解】根据题意得:x10,解得x1,则自变量x的取值范围是x1故选B【点睛】本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数6、B【解析】根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.7、A【解析】根据一元二次方程的定义可得m10,再解即可【详解】由题意得:m10,解得:m1,
14、故选A【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程8、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.9、B【解析】试题解析:向量最后的差应该还是向量. 故错误.故选B.10、B【解析】在5.56.5组别的频数是8,总数是40,=0.1故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、25【解析】直尺的对边平行,1=20,3=1=20,2=45-3=45-20=2512、88 【解析】连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形O
15、AB的面积,计算即可【详解】连接EF、OC交于点H,则OH=2,FH=OHtan30=2,菱形FOEC的面积=44=8,扇形OAB的面积=8,则阴影部分的面积为88,故答案为88【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键13、16,3n+1【解析】观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可【详解】由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+32,第5个图案基础图形的个数为4+3(51
16、)=16,第n个图案基础图形的个数为4+3(n1)=3n+1.故答案为16,3n+1.【点睛】本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.14、【解析】解:设E(x,x),B(2,x+2),反比例函数 (k0,x0)的图象过点B. E.x2=2(x+2), ,(舍去), ,故答案为15、m0且x-20,则有4-m 0且4-m-20,解得:m4且m2.16、1【解析】解:2m24mn+2n2=2(mn)2,当mn=4时,原式=242=1故答案为:1三、解答题(共8题,共72分)17、(1)y=2x+200(30x60)(2)w=2(x65)2 +2000);(3)当销售单价为6
17、0元时,该公司日获利最大,为1950元【解析】(1)设出一次函数解析式,把相应数值代入即可(2)根据利润计算公式列式即可;(3)进行配方求值即可【详解】(1)设y=kx+b,根据题意得解得:y=2x+200(30x60)(2)W=(x30)(2x+200)450=2x2+260x6450=2(x65)2 +2000)(3)W =2(x65)2 +200030x60x=60时,w有最大值为1950元当销售单价为60元时,该公司日获利最大,为1950元 考点:二次函数的应用18、 (1) ; (2)95m.【解析】(1)过点M作MDAB于点D,易求AD的长,再由BD=MD可得BD的长,即M到AB的
18、距离;(2)过点N作NEAB于点E,易证四边形MDEN为平行四边形,所以ME的长可求出,再根据MN=AB-AD-BE计算即可【详解】解:(1)过点M作MDAB于点D,MDAB,MDA=MDB=90,MAB=60,MBA=45,在RtADM中,;在RtBDM中,BDMD,AB=600m,AD+BD=600m,AD+,AD(300)m,BD=MD=(900-300),点M到AB的距离(900-300)(2)过点N作NEAB于点E,MDAB,NEAB,MDNE,ABMN,四边形MDEN为平行四边形,NE=MD=(900-300),MN=DE,NBA=53,在RtNEB中,BEm,MN=AB-AD-B
19、E【点睛】考查了解直角三角形的应用,通过解直角三角形能解决实际问题中的很多有关测量问题,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案是解题的关键19、米.【解析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a0),则据题意得:,解得:,羽毛球飞行的路线所在的抛物线的表达式为:y=x2+x+1,y=(x4)2+,飞行的最高高度为:米【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函
20、数的基本性质.20、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.21、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台【解析】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;
21、(2)设最多应购进A种机器人a台,购进B种机器人(200a)台,由题意得,根据题意两不等式即可得到结论【详解】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,由题意得,解得,答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;(2)设最多应购进A种机器人a台,购进B种机器人(200a)台,由题意得,30a+40(200a)7000,解得:a100,则最多应购进A种机器人100台【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键22、(1)证明见解析;(2)AC=4.【解析】(1)连接,根据切线的性质得到,
22、根据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可【详解】(1)连接射线切于点,由圆周角定理得:,;(2)由(1)可知:,设的半径为,则,在中,由勾股定理可知:,在中,由勾股定理可知:【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键23、(1)60;90;统计图详见解析;(2)300;(3)【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比
23、之和,乘以900即可得到结果;(3)列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率试题解析:(1)根据题意得:3050%=60(名),“了解”人数为60(15+30+10)=5(名),“基本了解”占的百分比为100%=25%,占的角度为25%360=90,补全条形统计图如图所示:(2)根据题意得:900=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪 石 布剪 (剪,剪) (石,剪) (布,剪)石 (剪,石) (石,石) (布,石)布 (剪,布) (石,布) (布,布)所有等可能
24、的情况有9种,其中两人打平的情况有3种,则P=考点:1、条形统计图,2、扇形统计图,3、列表法与树状图法24、(1)y=10x+160;(2)5280元;(3)10000元.【解析】试题分析:(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案试题解析:(1)依题意有:y=10x+160;(2)依题意有:W=(8050x)(10x+160)=10(x7)2+5290,-100且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:10(x7)2+52905200,解得4x10,则200y260,20050=10000(元)答:他至少要准备10000元进货成本点睛:此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量每个的利润=W得出函数关系式是解题关键