《新余市重点中学2023年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《新余市重点中学2023年中考数学全真模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1某品牌的饮水机接通电源就进入自动程序:开机加热到水温100,停止加热,水温开始下降,此时水温()与开机后用时(min)成反比例关系,直至水温降至30,饮水机关机饮水机关机后即刻自动开机,重复上述自动程序若在水温为30时,接通电源后,水温y()和时间x(min)的关系如图所示,水温从100降到35所用的时间
2、是()A27分钟B20分钟C13分钟D7分钟2如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A6cmBcmC8cmDcm3如图,直线ABCD,AE平分CAB,AE与CD相交于点E,ACD=40,则DEA=()A40B110C70D1404若kb0,则一次函数的图象一定经过( )A第一、二象限B第二、三象限C第三、四象限D第一、四象限5如图,AB与O相切于点A,BO与O相交于点C,点D是优弧AC上一点,CDA27,则B的大小是( )A27B34C36D546一个六边形的六个内角都是120(如图),连续四条边的长依次为 1,3,3
3、,2,则这个六边形的周长是()A13B14C15D167若是关于x的方程的一个根,则方程的另一个根是( )A9B4C4D38实数a在数轴上对应点的位置如图所示,把a,a,a2按照从小到大的顺序排列,正确的是()Aaaa2Baaa2Caa2aDaa2a92(5)的值是()A7 B7 C10 D1010如图,将函数y(x2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A、B若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()Ay(x2)2-2By(x2)2+7Cy(x2)2-5Dy(x2)2+4二、填空题(本大题共6个小
4、题,每小题3分,共18分)11计算:|2|+()1=_12图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙)图乙种,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为_cm13已知二次函数的图象如图所示,有下列结论:,;,其中正确的结论序号是_14如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD100,AE200,AB40,AC20,BC30,则通过计算可得DE长为_15如图,已知ABCD,=_16函数的自变量x的取值范围是_
5、三、解答题(共8题,共72分)17(8分)解分式方程: - = 18(8分)如图,在中,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,求线段的长.19(8分)某数学兴趣小组为测量如图(所示的一段古城墙的高度,设计用平面镜测量的示意图如图所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处 已知ABBD、CDBD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案 要求:面出示意图(不要求写画法);写出方案,给出简要的计算过程:给出
6、的方案不能用到图的方法20(8分)如图,已知AB是O的直径,BCAB,连结OC,弦ADOC,直线CD交BA的延长线于点E(1)求证:直线CD是O的切线;(2)若DE2BC,AD5,求OC的值21(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(3,0),点C的坐标为(0,3),对称轴为直线x1(1)求抛物线的解析式;(2)若点P在抛物线上,且SPOC4SBOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值22(10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1
7、=1(1)若CE=1,求BC的长;(1)求证:AM=DF+ME23(12分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FGx轴,则此段时间,甲机器人的速度为 米/分;(4)求A、C两点之间的距离;
8、(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米24如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解【详解】解:设反比例函数关系式为:,将(7,100)代入,得k=700,将y=35代入,解得;水温从100降到35所用的
9、时间是:207=13,故选C【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键2、B【解析】试题分析:从半径为9cm的圆形纸片上剪去圆周的一个扇形,留下的扇形的弧长=12,根据底面圆的周长等于扇形弧长,圆锥的底面半径r=6cm,圆锥的高为=3cm故选B.考点: 圆锥的计算3、B【解析】先由平行线性质得出ACD与BAC互补,并根据已知ACD=40计算出BAC的度数,再根据角平分线性质求出BAE的度数,进而得到DEA的度数【详解】ABCD,ACD+BAC=180,ACD=40,BAC=18040=140,AE平分CAB,BAE=BAC=140=70,DEA=180BAE=110,故选B【
10、点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补4、D【解析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解【详解】kb0时,b0,此时一次函数y=kx+b的图象经过第一、三、四象限;当k0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb0时,一次函数y=kx+b的图象一定经过第一、四象限。故选:D【点睛】此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系5、C【解析】由切线的性质可知OAB=90,由圆周角定理可知BOA=54,根据直角三角形两锐角互余可知B=36【详解】解:AB与O相切于点A,OABA
11、OAB=90CDA=27,BOA=54B=90-54=36故选C考点:切线的性质6、C【解析】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I因为六边形ABCDEF的六个角都是120,所以六边形ABCDEF的每一个外角的度数都是60所以都是等边三角形所以 所以六边形的周长为3+1+4+2+2+3=15;故选C7、D【解析】解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,解得a=,故选D.8、D【解析】根据实数a在数轴上的位置,判断a,a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.【详解】由数轴上的位置可得,a0, 0a2a,所
12、以,aa2a.故选D【点睛】本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,a,a2的位置.9、D【解析】根据有理数乘法法则计算.【详解】2(5)=+(25)=10.故选D.【点睛】考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0 .10、D【解析】函数的图象过点A(1,m),B(4,n),m=,n=3,A(1,),B(4,3),过A作ACx轴,交BB
13、的延长线于点C,则C(4,),AC=41=3,曲线段AB扫过的面积为9(图中的阴影部分),ACAA=3AA=9,AA=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,新图象的函数表达式是故选D二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据立方根、绝对值及负整数指数幂等知识点解答即可.【详解】原式= -2 -2+3= -1【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.12、【解析】试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周
14、长为:4=.考点:菱形的性质.13、【解析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】由图象可知:抛物线开口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,故正确;对称轴为,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,故正确故答案为【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确
15、定14、1【解析】先根据相似三角形的判定得出ABCAED,再利用相似三角形的性质解答即可【详解】 又A=A,ABCAED, BC=30,DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.15、85【解析】如图,过F作EFAB,而ABCD,ABCDEF,ABF+BFE=180,EFC=C,=180ABF+C=180120+25=85故答案为85.16、x1【解析】根据分母不等于2列式计算即可得解【详解】由题意得,x-12,解得x1故答案为x1【点睛】本题考查的知识点为:分式有意义,分母不为2三、解答题(共8题,共72分)17、方程无解【解析】找出分式
16、方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可【详解】解:方程的两边同乘(x1)(x1),得:, ,此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:去分母;解整式方程;验根.18、(1)理由见解析;(2)【解析】(1)根据得到A=PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;(2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论【详解】(1)理由如下,垂直平分,即.(2)连接,设,由(1)得,又,解得,即【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出
17、辅助线解题的关键19、(1)8m;(2)答案不唯一【解析】(1)根据入射角等于反射角可得 APB=CPD ,由 ABBD、CDBD 可得到 ABP=CDP=90,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得APB=CPD,ABP=CDP=90,RtABPRtCDP, ,CD=8. 答:该古城墙的高度为8m(2)解:答案不唯一,如:如图, 在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为.即可测量这段古城墙AB的高度,过点D作DCAB于点C.在RtACD中,ACD=90,
18、tan=,AC= tan,AB=AC+BC=tan+h【点睛】本题考查相似三角形性质的应用解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题20、(1)证明见解析;(2)【解析】试题分析:(1)首选连接OD,易证得CODCOB(SAS),然后由全等三角形的对应角相等,求得CDO=90,即可证得直线CD是O的切线;(2)由CODCOB可得CD=CB,即可得DE=2CD,易证得EDAECO,然后由相似三角形的对应边成比例,求得AD:OC的值试题解析:(1)连结DO ADOC,DAO=COB,ADO=COD又OA=OD,DAO=ADO,COD=COB 3分又CO
19、CO, ODOBCODCOB(SAS) 4分CDO=CBO=90又点D在O上,CD是O的切线(2)CODCOBCD=CBDE=2BC,ED=2CDADOC,EDAECO,考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质21、(1)yx2+2x3;(2)点P的坐标为(2,21)或(2,5);(3)【解析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|然后依据SPOC2SBOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析
20、式,设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可【详解】解:(1)抛物线与x轴的交点A(3,0),对称轴为直线x1,抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为ya(x+3)(x1),将点C(0,3)代入,得:3a3,解得a1,则抛物线解析式为y(x+3)(x1)x2+2x3;(2)设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|SPOC2SBOC,OC|a|2OCOB,即3|a|231,解得a2当a2时,点P的坐标为(2,21);当a2时,点P的坐标为(2,5)点P的坐标为(2,2
21、1)或(2,5)(3)如图所示:设AC的解析式为ykx3,将点A的坐标代入得:3k30,解得k1,直线AC的解析式为yx3设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3)QDx3( x2+2x3)x3x22x+3x23x(x2+3x+)(x+)2+, 当x时,QD有最大值,QD的最大值为【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用22、 (1)1;(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得ABCD,再根据两直线平行,内错角相等可得1=ACD,所以ACD=1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得C
22、E=DE,然后求出CD的长度,即为菱形的边长BC的长度;(1)先利用“边角边”证明CEM和CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明1=G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明CDF和BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证试题解析:(1)四边形ABCD是菱形,ABCD,1=ACD,1=1,ACD=1,MC=MD,MECD,CD=1CE,CE=1,CD=1,BC=CD=1;(1)AM=DF+ME证明:如图,F为边BC的中点, BF=CF=BC,CF=CE,在菱形ABCD中,AC平分BCD
23、,ACB=ACD,在CEM和CFM中,CEMCFM(SAS),ME=MF,延长AB交DF的延长线于点G,ABCD,G=1,1=1,1=G,AM=MG,在CDF和BGF中,CDFBGF(AAS),GF=DF,由图形可知,GM=GF+MF,AM=DF+ME23、(1)距离是70米,速度为95米/分;(2)y=35x70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米【解析】(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法
24、求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+602)2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,1(9560)=35,点F的坐标为(3,35),则,解得,线段EF所在直线的函数解析式为y=35x70;(3)线段FGx轴,甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+607=490米;(5)设前2分钟,两机器人出发
25、x分钟相距21米,由题意得,60x+7095x=21,解得,x=1.2,前2分钟3分钟,两机器人相距21米时,由题意得,35x70=21,解得,x=2.14分钟7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,解得,则直线GH的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米【点睛】本题考查了一次函数的应用,读懂图像是解题关键.24、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋
26、转的知识可得:A(1,0),B(0,2),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,可知抛物线过点.将原抛物线沿轴向下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴为.由题得(0,1)当时,如图,此时,点的坐标为.当时,如图,同理可得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用