《广西钦州市钦南区犀牛脚中学2023届中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广西钦州市钦南区犀牛脚中学2023届中考猜题数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()ABCD2如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则ACE的周长为( )A2+B2+2C4D33据悉,超级磁力风力发电机可以大幅
2、度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A5.3103B5.3104C5.3107D5.31084共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A平均数B中位数C众数D方差5ABC在正方形网格中的位置如图所示,则cosB的值为( )ABCD26一次函数y1kx+1
3、2k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确7如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果AEF的面积为2,那么四边形CDFE的面积等于( )A18B22C24D468下面四个几何体: 其中,俯视图是四边形的几何体个数是()A1B2C3D49在ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC
4、,AC中点,连接DF,FE,则四边形DBEF的周长是( )A5B7C9D1110有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11将多项式因式分解的结果是 12如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则以AB为边的正方形ABCD的周长为_13亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_14已知抛物线 的部分图象如图所示,根据函数图象可知,当 y0 时,x 的取值范围是_15正十二边形每个内角的度数为 16如图,在ABCD
5、中,AC与BD交于点M,点F在AD上,AF6cm,BF12cm,FBMCBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动点P运动到F点时停止运动,点Q也同时停止运动当点P运动_秒时,以点P、Q、E、F为顶点的四边形是平行四边形三、解答题(共8题,共72分)17(8分)先化简,再求值:,其中x118(8分)如图,在平面直角坐标系中,O为坐标原点,AOB是等腰直角三角形,AOB=90,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使
6、四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.19(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出,;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?20(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围
7、内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_名学生,最喜欢用电话沟通的所对应扇形的圆心角是_;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率21(8分)如图,在ABCD中,过点A作AEBC于点E,AFDC于点F,AE=AF(1)求证:四边形ABCD是菱形;(2)若EAF=60,CF=2,求AF的长22(10分)某
8、中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_人,被调查学生的课外阅读时间的中位数是_小时,众数是_小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?23(12分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起据实
9、验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半求足球开始飞出到第一次落地时,该抛物线的表达式足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?24如图,BAO=90,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=90(2)若m=4,求BE的长(3)在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的值当tanDBE=时,直接写出CDP与BDP面积比参考答案一、选择题(共10
10、小题,每小题3分,共30分)1、B【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形故选:B【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图2、B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:DE垂直平分AB,BE=AE,AE+CE=BC=2,ACE的周长=AC+AE+CE=AC+BC=2+2,故选B点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等3、C【解析】科学记数法的表示形式
11、为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).4、B【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受
12、分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。5、A【解析】解:在直角ABD中,BD=2,AD=4,则AB=,则cosB=故选A6、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G
13、1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大7、B【解析】连接FC,先证明AEFBEC,得出AEEC=13,所以SEFC=3
14、SAEF,在根据点F是ABCD的边AD上的三等分点得出SFCD=2SAFC,四边形CDFE的面积=SFCD+ SEFC,再代入AEF的面积为2即可求出四边形CDFE的面积.【详解】解:ADBC,EAF=ACB,AFE=FBC;AEF=BEC,AEFBEC,=,AEF与EFC高相等,SEFC=3SAEF,点F是ABCD的边AD上的三等分点,SFCD=2SAFC,AEF的面积为2,四边形CDFE的面积=SFCD+ SEFC=16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.8、B【解析】试题分析:根据俯视图是
15、分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B考点:简单几何体的三视图9、B【解析】试题解析:D、E、F分别为AB、BC、AC中点,DF=BC=2,DFBC,EF=AB=,EFAB,四边形DBEF为平行四边形,四边形DBEF的周长=2(DF+EF)=2(2+)=1故选B10、C【解析】根据主视图的定义判断即可【详解】解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确故选:【点睛】此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、m(m+n)(mn)【解析】试题分析:原式=m(m+n)(mn)故答
16、案为:m(m+n)(mn)考点:提公因式法与公式法的综合运用12、1【解析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长【详解】在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点A的横坐标是0,该抛物线的对称轴为直线x=,点B是这条抛物线上的另一点,且ABx轴,点B的横坐标是3,AB=|0(3)|=3,正方形ABCD的周长为:34=1,故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件13、4.41【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值
17、时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:44000000=4.41,故答案为4.41点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值14、【解析】根据抛物线的对称轴以及抛物线与x轴的一个交点,确定抛物线与x轴的另一个交点,再结合图象即可得出答案【详解】解:根据二次函数图象可知:抛物线的对称轴为直线,与x轴的一个交点为(-1,0),抛物线与x轴的另一个交点为(3,0),结合图象可知,当 y0 时,即x轴上方的图象
18、,对应的x 的取值范围是,故答案为: 【点睛】本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x轴的另一个交点,并熟悉二次函数与不等式的关系15、【解析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解【详解】试题分析:正十二边形的每个外角的度数是:=30,则每一个内角的度数是:18030=150故答案为15016、3或1【解析】由四边形ABCD是平行四边形得出:ADBC,AD=BC,ADB=CBD,又由FBM=CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可
19、得出结果【详解】解:四边形ABCD是平行四边形,ADBC,AD=BC,ADB=CBD,FBM=CBM,FBD=FDB,FB=FD=12cm,AF=6cm,AD=18cm,点E是BC的中点,CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1故答案为3或1【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识注意掌握分类讨论思想的应用是解此题的关键三、解答题(共8题,共72分)17、解:原
20、式=,【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简然后代x的值,进行二次根式化简解:原式=当x1时,原式.18、 (1) B(-1.2);(2) y=;(3)见解析.【解析】(1)过A作ACx轴于点C,过B作BDx轴于点D,则可证明ACOODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PEy轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出POA的面积,则可得到四边形ABOP的面积,再利用二次函数的
21、性质可求得其面积最大时P点的坐标【详解】(1)如图1,过A作ACx轴于点C,过B作BDx轴于点D,AOB为等腰三角形,AO=BO,AOB=90,AOC+DOB=DOB+OBD=90,AOC=OBD,在ACO和ODB中 ACOODB(AAS),A(2,1),OD=AC=1,BD=OC=2,B(-1,2);(2)抛物线过O点,可设抛物线解析式为y=ax2+bx,把A、B两点坐标代入可得,解得,经过A、B、O原点的抛物线解析式为y=x2-x;(3)四边形ABOP,可知点P在线段OA的下方,过P作PEy轴交AO于点E,如图2,设直线AO解析式为y=kx,A(2,1),k=,直线AO解析式为y=x,设P
22、点坐标为(t,t2-t),则E(t,t),PE=t-(t2-t)=-t2+t=-(t-1)2+,SAOP=PE2=PE-(t-1)2+,由A(2,1)可求得OA=OB=,SAOB=AOBO=,S四边形ABOP=SAOB+SAOP=-(t-1)2+=,-0,当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-)【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表
23、示出四边形ABOP的面积是解题的关键本题考查知识点较多,综合性较强,难度适中19、(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)被调查总人数为m=1010%=100人,用支付宝人数所占百分比n%= ,m=100,n=35.(2)网购人数为10015%=15人,微信人数所占百分比为,补全图形如图:(3)估算全校2000名学生中,最认可“
24、微信”这一新生事物的人数为200040%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.20、 (1)120,54;(2)补图见解析;(3)660名;(4).【解析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求
25、解【详解】解:(1)这次统计共抽查学生2420%120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是36054,故答案为120、54;(2)喜欢使用短信的人数为120182466210(人),条形统计图为:(3)1200660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和用样
26、本估计总体21、 (1)见解析;(2)2【解析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可; 方法二: 只要证明AEBAFD. 可得AB=AD即可解决问题;(2) 在RtACF, 根据AF=CFtanACF计算即可.【详解】(1)证法一:连接AC,如图AEBC,AFDC,AE=AF,ACF=ACE,四边形ABCD是平行四边形,ADBCDAC=ACBDAC=DCA,DA=DC,四边形ABCD是菱形证法二:如图,四边形ABCD是平行四边形,B=DAEBC,AFDC,AEB=AFD=90,又AE=AF,AEBAFDAB=AD,四边形ABCD是菱形(2)连接AC,如图AE
27、BC,AFDC,EAF=60,ECF=120,四边形ABCD是菱形,ACF=60,在RtCFA中,AF=CFtanACF=2【点睛】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。22、(1)50;4;5;画图见解析;(2)144;(3)64【解析】(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;(3)求出总人
28、数与课外阅读时间为6小时的学生人数的百分比的积即可【详解】解:(1)课外阅读达3小时的共10人,占总人数的20%,=50(人)课外阅读4小时的人数是32%,5032%=16(人),男生人数=168=8(人);课外阅读6小时的人数=5064888123=1(人),课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,中位数是4小时,众数是5小时补全图形如图所示故答案为50,4,5;(2)课外阅读5小时的人数是20人,360=144故答案为144;(3)课外阅读6小时的人数是4人,800=64(人)答:九年级一周课外阅读时间为6小时的学生大约有64人【点睛】本题考查了统计图
29、与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.23、(1)(或)(2)足球第一次落地距守门员约13米(3)他应再向前跑17米【解析】(1)依题意代入x的值可得抛物线的表达式(2)令y=0可求出x的两个值,再按实际情况筛选(3)本题有多种解法如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD【详解】解:(1)如图,设第一次落地时,抛物线的表达式为由已知:当时即表达式为(或)(2)令(舍去)足球第一次落地距守门员约13米(3)解法一:如图,第二次足球弹出后的距离为根据题意:(即相当于将抛物线向下平移了2
30、个单位)解得(米)答:他应再向前跑17米24、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或【解析】由知,再由知、,据此可得,证即可得;易知四边形ABEF是矩形,设,可得,证得,在中,由,列方程求解可得答案;分点C在AF的左侧和右侧两种情况求解:左侧时由知、,在中,由可得关于m的方程,解之可得;右侧时,由知、,利用勾股定理求解可得作于点G,延长GD交BE于点H,由知,据此可得,再分点D在矩形内部和外部的情况求解可得【详解】如图1,、,四边形ABEF是矩形,设,则,在中,即,解得:,的长为1如图1,当点C在AF的左侧时,则,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,又,且,当点D在矩形ABEF的内部时,由可设、,则,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,则,综上,与面积比为或【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点