广东省韶关市南雄市2023届中考试题猜想数学试卷含解析.doc

上传人:lil****205 文档编号:87993114 上传时间:2023-04-19 格式:DOC 页数:18 大小:1,020.50KB
返回 下载 相关 举报
广东省韶关市南雄市2023届中考试题猜想数学试卷含解析.doc_第1页
第1页 / 共18页
广东省韶关市南雄市2023届中考试题猜想数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《广东省韶关市南雄市2023届中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省韶关市南雄市2023届中考试题猜想数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,直线、及木条在同一平面上,将木条绕点旋转到与直线

2、平行时,其最小旋转角为( )ABCD2如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )ABCD3全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( )ABCD4如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )AB2CD5图中三视图对应的正三棱柱是()ABCD6如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A、B.若曲线段AB扫过

3、的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A B C D 7将5570000用科学记数法表示正确的是( )A5.57105 B5.57106 C5.57107 D5.571088下列运算正确的是()Aa3a2=a6B(x3)3=x6Cx5+x5=x10Da8a4=a49不等式组的解集为则的取值范围为( )ABCD10某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在边长为4的菱形ABCD中,A=60,M是AD边的中点

4、,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,则线段AC长度的最小值是_12如图,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图所示,则矩形ABCD的周长为_ 13在直角三角形ABC中,C=90,已知sinA=,则cosB=_.14一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 15已知点P(2,3)在一次函数y2xm的图象上,则m_16因式分解:2b2a2a3bab3=_三、解答题(共

5、8题,共72分)17(8分)如图,BAD是由BEC在平面内绕点B旋转60而得,且ABBC,BECE,连接DE(1)求证:BDEBCE;(2)试判断四边形ABED的形状,并说明理由18(8分)化简,再求值:19(8分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游租车公司:按日收取固定租金80元,另外再按租车时间计费共享汽车:无固定租金,直接以租车时间(时)计费如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案20(8分)已知一个

6、二次函数的图象经过A(0,3),B(1,0),C(m,2m+3),D(1,2)四点,求这个函数解析式以及点C的坐标21(8分)如图,矩形中,对角线,相交于点,且,动点,分别从点,同时出发,运动速度均为lcm/s点沿运动,到点停止点沿运动,点到点停留4后继续运动,到点停止连接,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为 (1)求线段的长(用含的代数式表示);(2)求时,求与之间的函数解析式,并写出的取值范围;(3)当时,直接写出的取值范围22(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若BAC=30,AC

7、=4,求菱形OCED的面积23(12分)直线y1kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D(1)求直线AB的解析式;(2)根据图象写出不等式kx+b0的解集;(3)若点P是x轴上一动点,当COD与ADP相似时,求点P的坐标24已知化简;如果、是方程的两个根,求的值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】如图所示,过O点作a的平行线d,根据平行线的性质得到23,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,ad,由两直线平行同位角相等得到2350,木条c绕O点与直线d重

8、合时,与直线a平行,旋转角1290.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.2、B【解析】由折叠的性质得到AE=AB,E=B=90,易证RtAEFRtCDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可【详解】矩形ABCD沿对角线AC对折,使ABC落在ACE的位置,AE=AB,E=B=90,又四边形ABCD为矩形,AB=CD,AE=DC,而AFE=DFC,在AEF与CDF中, ,AEFCDF(AAS),EF=DF;四边形ABCD为矩形,A

9、D=BC=6,CD=AB=4,RtAEFRtCDF,FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x,则FD6-x=.故选B【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等也考查了矩形的性质和三角形全等的判定与性质以及勾股定理3、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】数据0.000000007用科学记数法表示为710-1故选A【点睛】本题考查用科学记

10、数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、C【解析】过O作OCAB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长【详解】过O作OCAB,交圆O于点D,连接OA,由折叠得到CD=OC=OD=1cm,在RtAOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,则AB=2AC=2cm故选C【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键5、A【解析

11、】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确故选A【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键6、D【解析】分析:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA=3,然后根据平移规律即可求解详解:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1

12、-(-1)=3,曲线段AB扫过的面积为9(图中的阴影部分),矩形ACD A的面积等于9,ACAA=3AA=9,AA=3,新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1故选D点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA的长度是解题关键7、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于5570000有7位,所以可以确定n=71=1【详解】5570000=5.57101所以B正确8、D【解析】各项计算得到结果,即可作出判断

13、【详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键9、B【解析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可【详解】解:解不等式组,得不等式组的解集为x2,k12,解得k1故选:B【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中10、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解

14、即可求得答案【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】解:如图所示:MA是定值,AC长度取最小值时,即A在MC上时,过点M作MFDC于点F,在边长为2的菱形ABCD中,A=60,M为AD中点,2MD=

15、AD=CD=2,FDM=60,FMD=30,FD=MD=1,FM=DMcos30=,AC=MCMA=故答案为【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A点位置是解题关键12、1【解析】分析:根据点P的移动规律,当OPBC时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长详解:当OPAB时,OP最小,且此时AP=4,OP=2,AB=2AP=8,AD=2OP=6,C矩形ABCD=2(AB+AD)=2(8+6)=1故答案为1 点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,OP=213、【解析】试题分析:解答此题要利用互余角的

16、三角函数间的关系:sin(90-)=cos,cos(90-)=sin试题解析:在ABC中,C=90,A+B=90,cosB=sinA=考点:互余两角三角函数的关系14、【解析】让黄球的个数除以球的总个数即为所求的概率【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是故答案为:【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比15、1【解析】根据待定系数法求得一次函数的解析式,解答即可【详解】解:一次函数y=2x-m的图象经过点P(2,3),3=4-m,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键

17、是根据待定系数法求得一次函数的解析式16、ab(ab)2【解析】首先确定公因式为ab,然后提取公因式整理即可【详解】2b2a2a3bab3=ab(2ab-a2-b2)=ab(ab)2,所以答案为ab(ab)2.【点睛】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.三、解答题(共8题,共72分)17、证明见解析.【解析】(1)根据旋转的性质可得DB=CB,ABD=EBC,ABE=60,然后根据垂直可得出DBE=CBE=30,继而可根据SAS证明BDEBCE;(2)根据(1)以及旋转的性质可得,BDEBCEBDA,继而得出四条棱相等,证得四边形ABED为菱形【详解】(1)证明:

18、BAD是由BEC在平面内绕点B旋转60而得,DB=CB,ABD=EBC,ABE=60,ABEC,ABC=90,DBE=CBE=30,在BDE和BCE中,BDEBCE;(2)四边形ABED为菱形;由(1)得BDEBCE,BAD是由BEC旋转而得,BADBEC,BA=BE,AD=EC=ED,又BE=CE,BA=BE=ED= AD四边形ABED为菱形考点:旋转的性质;全等三角形的判定与性质;菱形的判定18、【解析】试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了试题解析:原式=当时,原式=.考点:1.二次根式的化简求值;2.分式的化简求值19、(1)y1=kx+80,y2=30x;(2

19、)见解析【解析】(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;(2)分y1=y2,y1y2,y1y2三种情况分析即可.【详解】解:(1)由题意,设y1=kx+80,将(2,110)代入,得110=2k+80,解得k=15,则y1与x的函数表达式为y1=15x+80;设y2=mx,将(5,150)代入,得150=5m,解得m=30,则y2与x的函数表达式为y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1y2得,15x+8030x,解得x;由y1y2得,15x+8030x,解得x故当租车时间为小时时,两种选择一样;当租

20、车时间大于小时时,选择租车公司合算;当租车时间小于小时时,选择共享汽车合算【点睛】本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.20、y=2x2+x3,C点坐标为(,0)或(2,7)【解析】设抛物线的解析式为y=ax2+bx+c,把A(0,3),B(1,0),D(1,2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,3),B(1,0),D(1,2)代入得,解得,抛物线的解析式为y=2x2+x3,把C(m,2m+3)代入得2m2+m3=2m+3,解得m1=,m2=2,C点坐标为(,0)或(2,

21、7)【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解21、(1)当0x1时,PD=1-x,当1x14时,PD=x-1(2)y=;(3)5x9【解析】(1)分点P在线段CD或在线段AD上两种情形分别求解即可(2)分三种情形:当5x1时,如图1中,根据y=SDPB,求解即可当1x9时,如图2中,根据y=SDPB,求解即可9x14时,如图3中,根据y=SAPQ+SABQ-SPAB计算即可(3)根据(2)中结论即可判断【详解】解:(1)当0x1时,PD=1-x,当1x14时,PD=x-1(2)当5x1

22、时,如图1中,四边形ABCD是矩形,OD=OB,y=SDPB=(1-x)6=(1-x)=12-x当1x9时,如图2中,y=SDPB=(x-1)1=2x-29x14时,如图3中,y=SAPQ+SABQ-SPAB=(14-x)(x-4)+1(tx-4)-1(14-x)=-x2+x-11综上所述,y=(3)由(2)可知:当5x9时,y=SBDP【点睛】本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型22、(1)证明见解析;(1)【解析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,

23、根据菱形的判定得出即可(1)解直角三角形求出BC=1AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可【详解】证明:,四边形OCED是平行四边形,矩形ABCD,四边形OCED是菱形;在矩形ABCD中,连接OE,交CD于点F,四边形OCED为菱形,为CD中点,为BD中点,【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半23、 (1) yx+6;(2) 0x2或x4;(3) 点P的坐标为(2,0)或(3,0).【解析】(1)将点坐标代入

24、双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;(2)根据点坐标和图象即可得出结论;(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论【详解】解:(1)点和点在反比例函数的图象上,解得,即把两点代入中得 ,解得:,所以直线的解析式为:;(2)由图象可得,当时,的解集为或(3)由(1)得直线的解析式为,当时,y6,当时,点坐标为 .设P点坐标为,由题可以,点在点左侧,则由可得当时,解得,故点P坐标为当时,解得,即点P的坐标为因此,点P的坐标为或时,与相似【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键24、 (1) ;(2)-4.【解析】(1)先通分,再进行同分母的减法运算,然后约分得到原式 (2)利用根与系数的关系得到 然后利用整体代入的方法计算【详解】解:(1)(2)、是方程,【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时, 也考查了分式的加减法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁