《广西壮族自治区崇左市2023届中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《广西壮族自治区崇左市2023届中考数学对点突破模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,A(4,0),B(1,3),以OA、OB为边作OACB,反比例函数(k0)的图象经过点C则下列结论不正确的是()AOACB的面积为12B若y5C将OACB向上平移12个单位长度,点B落在反比例函数的图象上D将OACB绕点O旋转180,点C的对应点落在反比例函数图象的另一分支上2104的
2、结果是( )A7 B7 C14 D133下列说法正确的是( )A掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定C“明天降雨的概率为”,表示明天有半天都在降雨D了解一批电视机的使用寿命,适合用普查的方式4如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )ABCD5如图,AB是O的直径,点C、D是圆上两点,且AOC126,则CDB()A54B64C27D376如图,空心圆柱体的左视图是( )ABCD7在同一平面内,下列说法:过两点有且只有一条直线;两条不相同的直线
3、有且只有一个公共点;经过直线外一点有且只有一条直线与已知直线垂直;经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A1个B2个C3个D4个8如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A点A与点BB点A与点DC点B与点DD点B与点C9如图,已知是中的边上的一点,的平分线交边于,交于,那么下列结论中错误的是( )ABACBDABBFABECCBDFBECDBDFBAE10已知xa=2,xb=3,则x3a2b等于()AB1C17D72二、填空题(共7小题,每小题3分,满分21分)11已知一组数据,的平均数是,那么这组数据的方差等于_12若函数y=mx2+2x+
4、1的图象与x轴只有一个公共点,则常数m的值是 13如图,ABCD的周长为36,对角线AC,BD相交于点O点E是CD的中点,BD=12,则DOE的周长为 14在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1则这位选手五次射击环数的方差为 15如果一个正多边形的中心角为72,那么这个正多边形的边数是 16已知矩形ABCD,ADAB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_.17分解因:=_三、解答题(共7小题,满分69分)18(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)
5、、B两点求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积19(5分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x0)的图象交于点B(2,n),过点B作BCx轴于点C,点D(33n,1)是该反比例函数图象上一点求m的值;若DBC=ABC,求一次函数y=kx+b的表达式20(8分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积21(10分)为厉行节能减排,倡导绿色出行,今年3月以来“共享单车”(俗称“小黄车”)公益活动登陆我市
6、中心城区某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值22(10分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次
7、买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?23(12分)如图,四边形ABC
8、D中,C90,ADDB,点E为AB的中点,DEBC.(1)求证:BD平分ABC;(2)连接EC,若A30,DC,求EC的长.24(14分)如图,AC是O的直径,PA切O于点A,点B是O上的一点,且BAC30,APB60(1)求证:PB是O的切线;(2)若O的半径为2,求弦AB及PA,PB的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】先根据平行四边形的性质得到点的坐标,再代入反比例函数(k0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.【详解】解:A(4,0),B(1,3), ,反比例函数(k0)的图象经过点,反比例函数解析式为.OACB的面
9、积为,正确;当时,故错误;将OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将OACB绕点O旋转180,点C的对应点落在反比例函数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.2、C【解析】解:104=1故选C3、B【解析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断【详解】解: A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平
10、均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B【点睛】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键4、A【解析】先利用勾股定理计算出AB,再在RtBDE中,求出BD即可;【详解】解:C=90,AC=4,BC=3,AB=5,ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=AC=4,DE=BC=3,BE=AB-AE=5-4=1,在RtDBE中,BD=,故选A.【点睛】本题考查了
11、旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等5、C【解析】由AOC126,可求得BOC的度数,然后由圆周角定理,求得CDB的度数【详解】解:AOC126,BOC180AOC54,CDBBOC27故选:C【点睛】此题考查了圆周角定理注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半6、C【解析】根据从左边看得到的图形是左视图,可得答案【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图7、C【解析】根据直线的性质公理,相交线的定义,垂线的性
12、质,平行公理对各小题分析判断后即可得解【详解】解:在同一平面内,过两点有且只有一条直线,故正确;两条不相同的直线相交有且只有一个公共点,平行没有公共点,故错误;在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故正确;经过直线外一点有且只有一条直线与已知直线平行,故正确,综上所述,正确的有共3个,故选C【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键8、A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数倒数的定义:若两个数的乘积是1,我们就称这两个
13、数互为倒数根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数故选A考点:1倒数的定义;2数轴9、C【解析】根据相似三角形的判定,采用排除法,逐项分析判断【详解】BAD=C,B=B,BACBDA故A正确BE平分ABC,ABE=CBE,BFABEC故B正确BFA=BEC,BFD=BEA,BDFBAE故D正确而不能证明BDFBEC,故C错误故选C【点睛】本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角10、A【解析】xa=2,xb=3,x3a2b=(xa)3(xb)2=89= ,故选A.二、填空题(共
14、7小题,每小题3分,满分21分)11、5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案详解:平均数为6, (3+4+6+x+9)5=6, 解得:x=8,方差为:点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型明确计算公式是解决这个问题的关键12、0或1【解析】分析:需要分类讨论:若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;若m0,则函数y=mx2+2x+1是二次函数,根据题意得:=44m=0,解得:m=1。当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。13、1【解析】ABCD的周长为33,2(BC+CD
15、)=33,则BC+CD=2四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,OD=OB=BD=3又点E是CD的中点,OE是BCD的中位线,DE=CDOE=BCDOE的周长=OD+OE+DE= OD +(BC+CD)=3+9=1,即DOE的周长为114、2.【解析】试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,方差S2=(57)2+(87)2+(77)2+(67)2+(17)2=2考点:方差15、5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念16、8【解析】根据题意作出图形即可得出答案,【详解】如图,ADAB,CDE1,ABE2,ABE3,BCE4
16、,CDE5,ABE6,ADE7,CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.17、 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)三、解答题(共7小题,满分69分)18、(1),;(2)P,【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求
17、出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,点A的坐标为(1,3)把点A(1,3)代入反比例函数y=,得:3=k,反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,点B的坐标为(3,1)(2)作点B作关于x轴的对称点D,
18、交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示点B、D关于x轴对称,点B的坐标为(3,1),点D的坐标为(3,- 1)设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,直线AD的解析式为y=-2x+1令y=-2x+1中y=0,则-2x+1=0,解得:x=,点P的坐标为(,0)SPAB=SABD-SPBD=BD(xB-xA)-BD(xB-xP)=1-(-1)(3-1)-1-(-1)(3-)=考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题19、(1)-6;(2)【解析】(1)由点B(2,n)、D(3
19、3n,1)在反比例函数(x0)的图象上可得2n=33n,即可得出答案;(2)由(1)得出B、D的坐标,作DEBC延长DE交AB于点F,证DBEFBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得【详解】解:(1)点B(2,n)、D(33n,1)在反比例函数(x0)的图象上,解得:;(2)由(1)知反比例函数解析式为,n=3,点B(2,3)、D(6,1),如图,过点D作DEBC于点E,延长DE交AB于点F,在DBE和FBE中,DBE=FBE,BE=BE,BED=BEF=90,DBEFBE(ASA),DE=FE=4,点F(2,1),将点B(2,3)、F(2,1)代入y=kx+b,
20、解得:,【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长20、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标
21、为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=23+21,=3+1,=1考点:反比例函数与一次函数的交点问题21、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得
22、x=70,x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,1000+1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为122、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到300.1(x10)=16,解方程即可求解;(3)由于根据(1)得到x1,又一次销售x(x10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)
23、首先把函数变为y=,然后可以得到函数的增减性,再结合已知条件即可解决问题试题解析:(1)设一次购买x只,则300.1(x10)=16,解得:x=1答:一次至少买1只,才能以最低价购买;(3)当10x1时,y=300.1(x10)13x=,当x1时,y=(1613)x=4x;综上所述:;(3)y=,当10x45时,y随x的增大而增大,即当卖的只数越多时,利润更大当45x1时,y随x的增大而减小,即当卖的只数越多时,利润变小且当x=46时,y1=303.4,当x=1时,y3=3y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象当x=45时,最低售价为300.1(4510)=16.5(元),此时利
24、润最大故店家一次应卖45只,最低售价为16.5元,此时利润最大考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论23、(1)见解析;(2).【解析】(1)直接利用直角三角形的性质得出,再利用DEBC,得出23,进而得出答案;(2)利用已知得出在RtBCD中,360,得出DB的长,进而得出EC的长.【详解】(1)证明:ADDB,点E为AB的中点,.12.DEBC,23.13.BD平分ABC.(2)解:ADDB,A30,160.3260.BCD90,430.CDE2+490.在RtBCD中,360,DB2.DEBE,160,DEDB2.【点睛】此题主要考查了直角三角形斜边上的中线与
25、斜边的关系,正确得出DB,DE的长是解题关键.24、(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PBOB根据四边形的内角和为360,结合已知条件可得OBP=90得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果(1)连接OBOA=OB,OBA=BAC=30 AOB=80-30-30=20 PA切O于点A,OAPA,OAP=90四边形的内角和为360,OBP=360-90-60-20=90 OBPB又点B是O上的一点,PB是O的切线 (2)连接OP,PA、PB是O的切线,PA=PB,OPA=OPB=,APB=30在RtOAP中,OAP=90,OPA=30,OP=2OA=22=1 PA=OP2-OA2=2PA=PB,APB=60,PA=PB=AB=2考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可