《广西兴业县2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《广西兴业县2022-2023学年中考数学猜题卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角是45,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:) A30.6米B32.1 米C37.9米D39.4米2如图
2、,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a0)经过ABC区域(包括边界),则a的取值范围是()A或B或C或D3在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )A0.13105B1.3104C1.3105D131034如图,AB是的直径,点C,D在上,若,则的度数为ABCD5已知:如图,在ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若AGC的周长为31cm,AB=20cm,则ABC的周长为()A31cmB41cmC51cmD61c
3、m6一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A20B24C28D307如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与ABC相似的是ABCD8下列各数中是有理数的是()AB0CD9如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是ABCD310如图,若a0,b0,c0,则抛物线y=ax2+bx+c的大致图象为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11= 12分解
4、因式:3x327x_13计算:_14如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_15若,则代数式的值为_16如图,在RtACB中,ACB=90,A=25,D是AB上一点,将RtABC沿CD折叠,使点B落在AC边上的B处,则ADB等于_三、解答题(共8题,共72分)17(8分)如图,在RtABC中,C=90,O、D分别为AB、AC上的点,经过A、D两点的O分别交于AB、AC于点E、F,且BC与O相切于点D(1)求证:;(2)当AC=2,CD=1时,求O的面积18(8分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用某校为了了解学
5、生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是 ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?19(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于2
6、40件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.20(8分)如图在由边长为1个单位长度的小正方形组成的1212网格中,已知点A,B,C,D均为网格线的交点在网格中将ABC绕点D顺时针旋转90画出旋转后的图形A1B1C1;在网格中将ABC放大2倍得到DEF,使A与D为对应点21(8分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“”表示该项数据已丢失)x101ax21ax2+bx+c72(1)
7、求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当ADM与BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出BAD和DCO的数量关系,并说明理由22(10分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率23(12分)(1)(问题发现)小明遇到这样一个问题:如图1,ABC是等边三角形,点D为B
8、C的中点,且满足ADE=60,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系(1)小明发现,过点D作DF/AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出ABC与ADE的面积之比24灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生20162017学
9、年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图请根据图中提供的信息,回答下列问题:(1)a= %,并补全条形图(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:延长AB交DC于H,作EGAB于G,如图所示,则GH=DE=15米,EG=DH,梯坎坡度i=1:,BH:CH=1:,设BH=x米,则CH=x米,在RtBCH中,BC=12米,由勾股定理得:,解得:x=6,BH=6米,CH=米,BG=GH
10、BH=156=9(米),EG=DH=CH+CD=+20(米),=45,EAG=9045=45,AEG是等腰直角三角形,AG=EG=+20(米),AB=AG+BG=+20+939.4(米)故选D2、B【解析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过ABC区域(包括边界),的取值范围是: 当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过ABC区域(包括边界),的取值范围是: 故选B.点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.3、B【解析】试题分析:科学记数法的表示
11、形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数将13000用科学记数法表示为:1.31故选B考点:科学记数法表示较大的数4、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.5、C【解析】DG是AB边的垂直平分线,GA=GB,AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,ABC的周长=AC+BC+AB=51cm,故选C.6、D【解析】试题解析:根据题意得=3
12、0%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球故选D考点:利用频率估计概率7、B【解析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为、2、只有选项B的各边为1、与它的各边对应成比例故选B【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8、B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案【详解】A、是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、是无理数,故本选项
13、错误,故选B【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键9、B【解析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键10、B【解析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】a0,抛物线的开口方向向下,故第三个选项错误;c0,抛物线与y轴的交点为在y轴的负
14、半轴上,故第一个选项错误;a0、b0,对称轴为x=0,对称轴在y轴右侧,故第四个选项错误故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】试题分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.22=4,=2.考点:算术平方根.12、3x(x+3)(x3)【解析】首先提取公因式3x,再进一步运用平方差公式进行因式分解【详解】3x327x3x(x29)3x(x+3)(x3)【点睛】本题考查用提公因式法和公式法进行因式分解的能力一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分
15、解,同时因式分解要彻底,直到不能分解为止13、1【解析】根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可【详解】解:12=21,=1,故答案为:1【点睛】本题考查了算术平方根的定义,先把化简是解题的关键14、1【解析】根据三视图的定义求解即可【详解】主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,俯视图是三个小正方形,俯视图的面积是3,左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,几何体的三视图的面积之和是4+3+2=1,故答案为1【点睛】本题考查了简单组合体的三视图,利用三视图的定义是解题关键15、-12【解析】分析:对所求代数式进行因式
16、分解,把,代入即可求解.详解:, ,故答案为: 点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.16、40【解析】将RtABC沿CD折叠,使点B落在AC边上的B处,ACD=BCD,CDB=CDB,ACB=90,A=25,ACD=BCD=45,B=9025=65,BDC=BDC=1804565=70,ADB=1807070=40故答案为40三、解答题(共8题,共72分)17、(1)证明见解析;(2). 【解析】(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得
17、到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积【详解】证明:连接OD,BC为圆O的切线,ODCB,ACCB,ODAC,CAD=ODA,OA=OD,OAD=ODA,CAD=OAD,则 ;(2)解:连接ED,在RtACD中,AC=2,CD=1,根据勾股定理得:AD= ,CAD=OAD,ACD=ADE=90,ACDADE,即AD2=ACAE,AE=
18、,即圆的半径为 ,则圆的面积为 【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键18、(1)150人;(2)补图见解析;(3)144;(4)300盒【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有3020%150人;(2)C类别人数为150(3
19、0+45+15)60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360144故答案为144(4)600()300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.19、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w
20、与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-1
21、0(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点20、(1)见解析(2)见解析【解析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,DEF即为所求【点睛】本题主要考查作图位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质21、 (1)
22、y=x24x+2;(2) 点B的坐标为(5,7);(1)BAD和DCO互补,理由详见解析.【解析】(1)由(1,1)在抛物线y=ax2上可求出a值,再由(1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由ADM和BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作ANx轴,交BD于点N,则AND=DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的
23、距离公式可求出BA、BD、BN的长度,由三者间的关系结合ABD=NBA,可证出ABDNBA,根据相似三角形的性质可得出ANB=DAB,再由ANB+AND=120可得出DAB+DCO=120,即BAD和DCO互补【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(1,7)、(0,2)代入y=x2+bx+c,得:,解得:,抛物线的表达式为y=x24x+2;(2)ADM和BDM同底,且ADM与BDM的面积比为2:1,点A到抛物线的距离与点B到抛物线的距离比为2:1抛物线y=x24x+2的对称轴为直线x=2,点A的横坐标为0,点B到抛物线的距离为1,点B的横坐标为1+2=5,点B的坐标为(5,
24、7)(1)BAD和DCO互补,理由如下:当x=0时,y=x24x+2=2,点A的坐标为(0,2),y=x24x+2=(x2)22,点D的坐标为(2,2)过点A作ANx轴,交BD于点N,则AND=DCO,如图所示设直线BD的表达式为y=mx+n(m0),将B(5,7)、D(2,2)代入y=mx+n,解得:,直线BD的表达式为y=1x2当y=2时,有1x2=2,解得:x=,点N的坐标为(,2)A(0,2),B(5,7),D(2,2),AB=5,BD=1,BN=,=又ABD=NBA,ABDNBA,ANB=DABANB+AND=120,DAB+DCO=120,BAD和DCO互补【点睛】本题是二次函数综
25、合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明ABDNBA是解(1)的关键.22、 (1);(2).【解析】(1)直接利用概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解【详解】解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;故答案为:;(2)画树状图为:共有6种等可能的结果数,其中乙摸到白球的结果数为2,所以乙摸到白球的概率=【点睛】本题考查列表法与树状图法:利用列表法或树状
26、图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率23、(1)AD=DE;(2)AD=DE,证明见解析;(3)【解析】试题分析:本题难度中等主要考查学生对探究例子中的信息进行归纳总结并能够结合三角形的性质是解题关键试题解析:(10分)(1)AD=DE(2)AD=DE证明:如图2,过点D作DF/AC,交AC于点F,ABC是等边三角形,AB=BC,B=ACB=ABC=60又DF/AC,BDF=BFD=60BDF是等边三角形,BF=BD,BFD=60,AF=CD,AFD=120EC是外角的平分线,DCE=120=AFDADC是ABD的外角,ADC=B
27、+FAD=60+FADADC=ADE+EDC=60+EDC,FAD=EDCAFDDCE(ASA),AD=DE;(3)考点:1等边三角形探究题;2全等三角形的判定与性质;3等边三角形的判定与性质24、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用310乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案【详解】解:(1)扇形统计图中a=15%40%20%25%=10%,该扇形所对圆心角的度数为31010%=31,参加社会实践活动的天数为8天的人数是:10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1(3)根据题意得:9000(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小