《广州市花都区花山重点达标名校2022-2023学年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广州市花都区花山重点达标名校2022-2023学年中考试题猜想数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图是二次函数y =ax2+bx + c(a0)图象如图所示,则下列结论,c0,2a + b=0;a+b+c=0,b24ac0,其中正确的有( )A1个B2个C3个D42如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D
2、,交BC于点E,则ACE的周长为( )A2+B2+2C4D33下列实数中,在2和3之间的是( )ABCD4一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )ABCD5下列说法中,正确的是()A不可能事件发生的概率为0B随机事件发生的概率为C概率很小的事件不可能发生D投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次6如图,O与直线l1相离,圆心O到直线l1的距离OB2,OA4,将直线l1绕点A逆时针旋转30后得到的直线l2刚好与O相切于点C,则OC( )A1B2C3D47如图,已知ABC,DCE,FEG,HGI是4个
3、全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1连接AI,交FG于点Q,则QI=()A1BCD8今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )A小明中途休息用了20分钟B小明休息前爬山的平均速度为每分钟70米C小明在上述过程中所走的路程为6600米D小明休息前爬山的平均速度大于休息后爬山的平均速度9如图,在菱形ABCD中,AB=5,BCD=120,则ABC的周长等于( )A20B15C10D510如图,ABC在边长为1个单位
4、的方格纸中,它的顶点在小正方形的顶点位置如果ABC的面积为10,且sinA,那么点C的位置可以在( )A点C1处B点C2处C点C3处D点C4处二、填空题(本大题共6个小题,每小题3分,共18分)11计算:12已知圆锥的底面半径为40cm, 母线长为90cm, 则它的侧面展开图的圆心角为_13反比例函数的图象经过点和,则 _ 14如图,O的半径为6,四边形ABCD内接于O,连接OB,OD,若BOD=BCD,则弧BD的长为_15如图,点A,B在反比例函数(k0)的图象上,ACx轴,BDx轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且BCE的面积是ADE的面积
5、的2倍,则k的值是_16已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_三、解答题(共8题,共72分)17(8分)如图,已知ABC,请用尺规作图,使得圆心到ABC各边距离相等(保留作图痕迹,不写作法)18(8分)计算:先化简,再求值:,其中19(8分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元今年的总收入和总支出计划各是多少万元?20(8分)如图,在RtABC中,ACB=90,AC=2cm,AB=4cm,动点P从点C出发,在BC
6、边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿CAB以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作O(1)当时,求PCQ的面积;(2)设O的面积为s,求s与t的函数关系式;(3)当点Q在AB上运动时,O与RtABC的一边相切,求t的值21(8分)如图,RtABC,CABC,AC4,在AB边上取一点D,使ADBC,作AD的垂直平分线,交AC边于点F,交以AB为直径的O于G,H,设BCx(1)求证:四边形AGDH为菱形;(2)若EFy,求y关于x的函数关系式;(3)连结OF,CG若AOF为等腰三角形,求O的面积;若BC3,则CG+9_(直接写出答案)22(10
7、分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A不超过5天”、“B6天”、“C7天”、“D8天”、“E9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?23(12分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中
8、30台派往A地区,20台派往B地区两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议24在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4)
9、,B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B求平移后图象顶点E的坐标;直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】抛物线与y轴交于负半轴,则c1,故正确;对称轴x1,则2a+b=1故正确;由图可知:当x=1时,y=a+b+c1故错
10、误;由图可知:抛物线与x轴有两个不同的交点,则b24ac1故错误综上所述:正确的结论有2个故选B【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用2、B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:DE垂直平分AB,BE=AE,AE+CE=BC=2,ACE的周长=AC+AE+CE=AC+BC=2+2,故选B点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等3、C【解析】分析:先求出每个数的范围,逐一分析得出选项
11、.详解:A、34,故本选项不符合题意;B、122,故本选项不符合题意;C、23,故本选项符合题意;D、34,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.4、B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.5、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A考点:随机事件6、B【解析】先利用三角函数计算出OAB60,再根
12、据旋转的性质得CAB30,根据切线的性质得OCAC,从而得到OAC30,然后根据含30度的直角三角形三边的关系可得到OC的长【详解】解:在RtABO中,sinOAB,OAB60,直线l1绕点A逆时针旋转30后得到的直线l1刚好与O相切于点C,CAB30,OCAC,OAC603030,在RtOAC中,OCOA1故选B【点睛】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d,则直线l和O相交dr;直线l和O相切dr;直线l和O相离dr也考查了旋转的性质7、D【解析】解:ABC、DCE、FEG是三个全等的等腰三角形,HI=AB=2,GI=BC=1,BI=2BC=2,=,=ABI
13、=ABC,ABICBA,=AB=AC,AI=BI=2ACB=FGE,ACFG,=,QI=AI=故选D点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解ABCDEF,ACDEFG是解题的关键8、C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确故选C考点:函数的图象、行程问题9、B【解析】ABCD
14、是菱形,BCD=120,B=60,BA=BCABC是等边三角形ABC的周长=3AB=1故选B10、D【解析】如图:AB=5, D=4, , ,AC=4,在RTAD中,D,AD=8, A=,故答案为D.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式【点睛】此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.12、【解析】圆锥的底面半径为40cm,则底面圆的周长是80cm,圆锥的底面周长等于侧面展开
15、图的扇形弧长,即侧面展开图的扇形弧长是80cm,母线长为90cm即侧面展开图的扇形的半径长是90cm根据弧长公式即可计算【详解】根据弧长的公式l=得到:80=,解得n=160度侧面展开图的圆心角为160度故答案为16013、-1【解析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值【详解】解:反比例函数y=的图象经过点(1,6),6=,解得k=6,反比例函数的解析式为y=点(m,-3)在此函数图象上上,-3=,解得m=-1故答案为-1【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数
16、的解析式是解答此题的关键14、4【解析】根据圆内接四边形对角互补可得BCD+A=180,再根据同弧所对的圆周角与圆心角的关系以及BOD=BCD,可求得A=60,从而得BOD=120,再利用弧长公式进行计算即可得.【详解】解:四边形ABCD内接于O,BCD+A=180,BOD=2A,BOD=BCD,2A+A=180,解得:A=60,BOD=120,的长=,故答案为4.【点睛】本题考查了圆周角定理、弧长公式等,求得A的度数是解题的关键.15、【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示BCE的面积是ADE的面积的2倍,E是AB的中点,SABC=2SBCE,SABD=2SADE
17、,SABC=2SABD,且ABC和ABD的高均为BF,AC=2BD,OD=2OCCD=k,点A的坐标为(,3),点B的坐标为(-,-),AC=3,BD=,AB=2AC=6,AF=AC+BD=,CD=k=【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理构造直角三角形利用勾股定理巧妙得出k值是解题的关键.16、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数【详解】袋中小球的总个数是:2=8(个)故答案为8个【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键三、解答题(共8题,共72分)17、见解析【解析】分别作ABC和ACB的平分线,
18、它们的交点O满足条件【详解】解:如图,点O为所作【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)18、 (1)1;(2)2-1.【解析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式=3+12+12=3+1+12=1(2)原式= =,当x=2时,原式= =2-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关
19、键是熟练掌握以上性质和分式的混合运算.19、今年的总收入为220万元,总支出为1万元【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设去年的总收入为x万元,总支出为y万元根据题意,得,解这个方程组,得,(1+10%)x=220,(1-20%)y=1答:今年的总收入为220万元,总支出为1万元20、(1);(2);(3)t的值为或1或【解析】(1)先根据t的值计算CQ和CP的长,由图形可知PCQ是直角三角形,根据三角形面积公式可得结论;(2)分两种情况:当Q在边AC上运动时,当Q在边AB上运动时;分别根据勾
20、股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;(3)分别当O与BC相切时、当O与AB相切时,当O与AC相切时三种情况分类讨论即可确定答案【详解】(1)当t=时,CQ=4t=4=2,即此时Q与A重合,CP=t=,ACB=90,SPCQ=CQPC=2=;(2)分两种情况:当Q在边AC上运动时,0t2,如图1,由题意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,S=;当Q在边AB上运动时,2t4如图2,设O与AB的另一个交点为D,连接PD,CP=t,AC+AQ=4t,PB=BCPC=2t,BQ=2+44t=64t,PQ为O的直径,PDQ=
21、90,RtACB中,AC=2cm,AB=4cm,B=30,RtPDB中,PD=PB=,BD=,QD=BQBD=64t=3,PQ=,S=;(3)分三种情况:当O与AC相切时,如图3,设切点为E,连接OE,过Q作QFAC于F,OEAC,AQ=4t2,RtAFQ中,AQF=30,AF=2t1,FQ=(2t1),FQOEPC,OQ=OP,EF=CE,FQ+PC=2OE=PQ,(2t1)+t=,解得:t=或(舍);当O与BC相切时,如图4,此时PQBC,BQ=64t,PB=2t,cos30=,t=1;当O与BA相切时,如图5,此时PQBA,BQ=64t,PB=2t,cos30=,t=,综上所述,t的值为
22、或1或【点睛】本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想21、(1)证明见解析;(2)yx2(x0);(3)或8或(2+2);4【解析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明AEFACB,可得解决问题;(3)分三种情形分别求解即可解决问题;只要证明CFGHFA,可得=,求出相应的线段即可解决问题;【详解】(1)证明:GH垂直平分线段AD,HAHD,GAGD,AB是直径,ABGH,EGEH,DGDH,AGDGDHAH,四边形AG
23、DH是菱形(2)解:AB是直径,ACB90,AEEF,AEFACB90,EAFCAB,AEFACB,yx2(x0)(3)解:如图1中,连接DFGH垂直平分线段AD,FAFD,当点D与O重合时,AOF是等腰三角形,此时AB2BC,CAB30,AB,O的面积为如图2中,当AFAO时,AB,OA,AF,解得x4(负根已经舍弃),AB,O的面积为8如图21中,当点C与点F重合时,设AEx,则BCAD2x,AB,ACEABC,AC2AEAB,16x,解得x222(负根已经舍弃),AB216+4x28+8,O的面积AB2(2+2)综上所述,满足条件的O的面积为或8或(2+2);如图3中,连接CGAC4,B
24、C3,ACB90,AB5,OHOA,AE,OEOAAE1,EGEH,EFx2,FG,AF,AH,CFGAFH,FCGAHF,CFGHFA,CG,CG+94故答案为4【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题22、(1)见解析;(2)A;(3)800人【解析】(1)用A组人数除以它所占的百分比求出样本容量,利用360乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众
25、数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【详解】解:(1)被调查的学生人数为2440%=60人,D类别人数为60(24+12+15+3)=6人,则D类别的百分比为100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A,故答案为:A;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000(25%+10%+5%)=800人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)y=200
26、x+74000(10x30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高【解析】(1)根据题意和表格中的数据可以得到y关于x的函数关系式;(2)根据题意可以得到相应的不等式,从而可以解答本题;(3)根据(1)中的函数解析式和一次函数的性质可以解答本题【详解】解:(1
27、)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30x)台,派往A、B地区的甲型联合收割机分别为(30x)台和(x10)台,y=1600x+1200(30x)+1800(30x)+1600(x10)=200x+74000(10x30);(2)由题意可得,200x+7400079600,得x28,28x30,x为整数,x=28、29、30,有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台
28、,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:y=200x+74000中y随x的增大而增大,当x=30时,y取得最大值,此时y=80000,派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高【点睛】本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答24、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可
29、求解;AB扫过的面积是平行四边形ABGE,根据S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的抛物线表达式为y
30、(xm)2+m+4,又平移后的抛物线过点B(2,0),将其代入得,(2m)2+m+40,解得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK7924552455638251答:图象A,B两点间的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.