《广东省肇庆市名校2023年中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省肇庆市名校2023年中考数学模拟精编试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1对于反比例函数y=,下列说法不正确的是(
2、)A图象分布在第二、四象限B当x0时,y随x的增大而增大C图象经过点(1,2)D若点A(x1,y1),B(x2,y2)都在图象上,且x1x2,则y1y22(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温()25262728天 数1123则这组数据的中位数与众数分别是( )A27,28B27.5,28C28,27D26.5,273为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图)估计该校男生的身高在169.5cm174.5cm之间的人数有( )A12B48C72D964如图,矩形OABC有两边在坐标轴上,点D、E分
3、别为AB、BC的中点,反比例函数y(x0)的图象经过点D、E若BDE的面积为1,则k的值是()A8B4C4D85平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A60B50C40D306“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()ABCD7若代数式2x2+3x1的值为1,则代数式4x2+6x1的值为()A3B1C1D38一次函数满足,且y随x的增大而减小,则此函
4、数的图像一定不经过( )A第一象限B第二象限C第三象限D第四象限9菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A3.5B4C7D14102018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A29.8109B2.98109C2.981010D0.2981010二、填空题(共7小题,每小题3分,满分21分)11已知,则_12图是一个三角形,分别连接这个三角形的中点得到图;再分别连接图中间小三角形三边的中点,得到图按上面的方法继续下去,第n个图形中有_个三角形(用含字母n的代数式表示)13如图,点G是的重
5、心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为_14如图,把一块直角三角板的直角顶点放在直尺的一边上,若1=50,则2=_15七边形的外角和等于_16出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_元,一天出售该种手工艺品的总利润y最大17如图,AB为0的弦,AB=6,点C是0上的一个动点,且ACB=45,若点M、N分别是AB、BC的中点,则MN长的最大值是_ 三、解答题(共7小题,满分69分)18(10分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处
6、测得木瓜A的仰角为45、木瓜B的仰角为30求C处到树干DO的距离CO(结果精确到1米)(参考数据:,)19(5分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC的三个顶点的坐标分别为A(1,3),B(4,0),C(0,0)(1)画出将ABC向上平移1个单位长度,再向右平移5个单位长度后得到的A1B1C1;(2)画出将ABC绕原点O顺时针方向旋转90得到A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标20(8分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、
7、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人21(10分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表请结合图表所给出的信息解答下列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图初三
8、(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率22(10分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数小马虎根据竞赛成绩,绘制了如图所示的统计图经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛预赛分为A、B、C、D四组进行,选手由抽签确定张
9、明、李刚两名同学恰好分在同一组的概率是多少?23(12分)(操作发现)(1)如图1,ABC为等边三角形,先将三角板中的60角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于30),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使DCE=30,连接AF,EF求EAF的度数;DE与EF相等吗?请说明理由;(类比探究)(2)如图2,ABC为等腰直角三角形,ACB=90,先将三角板的90角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于45),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=
10、CD,线段AB上取点E,使DCE=45,连接AF,EF请直接写出探究结果:EAF的度数;线段AE,ED,DB之间的数量关系24(14分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)假如你摸一
11、次,你摸到白球的概率P(白球) ;试估算盒子里黑、白两种颜色的球各有多少只?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】A. k=20,它的图象在第二、四象限,故本选项正确;B. k=20时,y随x的增大而增大,故本选项正确;C.,点(1,2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x10 x2,则y2y1,故本选项错误.故选:D.【点睛】考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.2、A【解析】根据表格可知:数据25出现1次
12、,26出现1次,27出现2次,28出现3次,众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28中位数是27这周最高气温的中位数与众数分别是27,28故选A.3、C【解析】解:根据图形,身高在169.5cm174.5cm之间的人数的百分比为:,该校男生的身高在169.5cm174.5cm之间的人数有30024%72(人)故选C4、B【解析】根据反比例函数的图象和性质结合矩形和三角形面积解答.【详解】解:作,连接四边形AHEB,四边形ECOH都是矩形,BEEC, 故选B【点睛】此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.5、C【
13、解析】先根据平角的定义求出1的度数,再由平行线的性质即可得出结论【详解】解:118010080,ac,180806040故选:C【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补6、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量工作效率结合提前 30 天完成任务,即可得出关于x的分式方程详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即故选C点睛:考查了由实际问题抽象出分式方程找到关键描述语,找到合适的等量关系是解决问题的关键7、D【解析】由2x2+1x11知2x2+1x2,代入原式2(2x2+1
14、x)1计算可得【详解】解:2x2+1x11,2x2+1x2,则4x2+6x12(2x2+1x)1221411故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键8、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k0,又满足kb0,由此即可得出答案【详解】y随x的增大而减小,一次函数y=kx+b单调递减,k0,kb0,直线经过第二、一、四象限,不经过第三象限,故选C【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k0,k、b是常数)的图象和性质是解题的关键.9、A【解析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得
15、OB=OD,然后判断出OH是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB【详解】菱形ABCD的周长为28,AB=284=7,OB=ODH为AD边中点,OH是ABD的中位线,OHAB7=3.1故选A【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键10、B【解析】根据科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,且为这个数的整数位数减1,由此即可解答【详解】29.8亿用科学记数法表示为: 29.8亿=29800000002.981故选B【点睛】本题考查了科学记数法的表示方
16、法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题(共7小题,每小题3分,满分21分)11、34【解析】,=,故答案为34.12、4n1【解析】分别数出图、图、图中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去如图中三角形的个数为按照这个规律即可求出第n各图形中有多少三角形【详解】分别数出图、图、图中的三角形的个数,图中三角形的个数为;图中三角形的个数为;图中三角形的个数为;可以发现,第几个图形中三角形的个数就是4与几的乘积减去1按照这个规律,如果设图形的个数为n,那么其中三角形的个数为故答案为【点睛】此题
17、主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题13、2【解析】分析:由点G是ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GEBC,可证得AEGACD,然后由相似三角形的对应边成比例,即可求得线段GE的长详解:点G是ABC重心,BC=6,CD=BC=3,AG:AD=2:3,GEBC,AEGADC,GE:CD=AG:AD=2:3,GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键
18、.14、40【解析】如图,1=50,3=1=50,2=9050=40,故答案为:40.15、360【解析】根据多边形的外角和等于360度即可求解【详解】解:七边形的外角和等于360故答案为360【点睛】本题考查了多边形的内角和外角的知识,属于基础题,解题的关键是掌握多边形的外角和等于36016、1【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答解:出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,y=(8-x)x,即y=-x2+8x,当x=- =1时,y取得最大值故答案为:117、3【解析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从
19、而求得直径后就可以求得最大值【详解】解:因为点M、N分别是AB、BC的中点,由三角形的中位线可知:MN=AC,所以当AC最大为直径时,MN最大这时B=90又因为ACB=45,AB=6 解得AC=6MN长的最大值是3故答案为:3【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大三、解答题(共7小题,满分69分)18、解:设OC=x,在RtAOC中,ACO=45,OA=OC=x在RtBOC中,BCO=30,AB=OAOB=,解得OC=5米答:C处到树干DO的距离CO为5米【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定
20、义,特殊角的三角函数值【分析】设OC=x,在RtAOC中,由于ACO=45,故OA=x,在RtBOC中,由于BCO=30,故,再根据AB=OAOB=2即可得出结论19、(1)作图见解析;(2)作图见解析;(3)P(,0)【解析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求【详解】解:(1)如图所示,A1B1C1为所求做的三角形;(2)如图所示,A2B2O为所求做的三角形;(3
21、)A2坐标为(3,1),A3坐标为(4,4),A2A3所在直线的解析式为:y=5x+16,令y=0,则x=,P点的坐标(,0)考点:平移变换;旋转变换;轴对称-最短路线问题20、(1)50,10;(2)见解析.(3)16.8万【解析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为,所
22、以全市参与辅导科目不多于2科的人数为24 16.8(万).【详解】解:(1)本次被调查的学员共有:1530%50(人),在被调查者中参加“3科”课外辅导的有:5015205010%10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:5010%5(人),补全的条形统计图如右图所示;(3)24 16.8(万),答:参与辅导科目不多于2科的学生大约有16.8人【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.21、(1)300人(2)b=0.15,c=0.2;(3) 【解析】分析:(1)利用合格的人数除
23、以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.详解:(1)由题意可得:该校初三学生共有:1050.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=3000.3=90(人),b=0.15,c=0.2;如图所示:(3)画树形图得:一共有12种情况,抽取到甲和乙的有2种,P(抽到甲和乙)=点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.22、(1)见解析;(2)140人;(1). 【
24、解析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率【详解】(1)由统计图可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全体(%)512.5101517.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,25%=40,(1+2)12.5%=40,(7+5)10%=40,(6+8)15%=40,(4+4)17.5%40,故乙组得5分的人数统计有误,正确人数应为:4017.5%4=
25、1(2)800(5%+12.5%)=140(人);(1)如图得:共有16种等可能的结果,所选两人正好分在一组的有4种情况,所选两人正好分在一组的概率是:【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件23、(1)110DE=EF;(1)90AE1+DB1=DE1 【解析】试题分析:(1)由等边三角形的性质得出AC=BC,BAC=B=60,求出ACF=BCD,证明ACFBCD,得出CAF=B=60,求出EAF=BAC+CAF=110;证出DCE=FCE,由SAS证明DCEFCE,得出DE=EF即可;(1)由等腰直角三角形的
26、性质得出AC=BC,BAC=B=45,证出ACF=BCD,由SAS证明ACFBCD,得出CAF=B=45,AF=DB,求出EAF=BAC+CAF=90;证出DCE=FCE,由SAS证明DCEFCE,得出DE=EF;在RtAEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论试题解析:解:(1)ABC是等边三角形,AC=BC,BAC=B=60DCF=60,ACF=BCD在ACF和BCD中,AC=BC,ACF=BCD,CF=CD,ACFBCD(SAS),CAF=B=60,EAF=BAC+CAF=110;DE=EF理由如下:DCF=60,DCE=30,FCE=6030=30,DCE=FCE在D
27、CE和FCE中,CD=CF,DCE=FCE,CE=CE,DCEFCE(SAS),DE=EF;(1)ABC是等腰直角三角形,ACB=90,AC=BC,BAC=B=45DCF=90,ACF=BCD在ACF和BCD中,AC=BC,ACF=BCD,CF=CD,ACFBCD(SAS),CAF=B=45,AF=DB,EAF=BAC+CAF=90;AE1+DB1=DE1,理由如下:DCF=90,DCE=45,FCE=9045=45,DCE=FCE在DCE和FCE中,CD=CF,DCE=FCE,CE=CE,DCEFCE(SAS),DE=EF在RtAEF中,AE1+AF1=EF1,又AF=DB,AE1+DB1=DE124、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.