《内蒙古自治区海勃湾区达标名校2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古自治区海勃湾区达标名校2023届中考数学押题试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1矩形具有而平行四边形不具有的性质是()A对角相等B对角线互相平分C对角线相等D对边相等2不等式的最小整数解是( )A3B2C1D23下列实数为无理数的是 ( )A-5BC0D4有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:40m+10=43m1;40m+10=43m+1,其中正确的是()ABCD5在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为有公共顶点且相等的两个角是对顶角 若,则它们互余A4BCD6已知一次函数且随的增大而增大,那么它的图象不经过()A第一象限B第二象限C第三象限D第四象限7
3、下列四个图形中既是轴对称图形,又是中心对称图形的是()ABCD8下列图形中,不是中心对称图形的是()A平行四边形B圆C等边三角形D正六边形9已知M9x24x3,N5x24x2,则M与N的大小关系是( )AMNBMNCMN故选A【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况10、B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率,三是构造的一些不循环的数,如1.010010001(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】这组数中无理数有,共2个,卡片
4、上的数为无理数的概率是 .故选B.【点睛】本题考查了无理数的定义及概率的计算.11、A【解析】在RtABC中,C=90,AB=4,AC=1,BC= ,则cosB= ,故选A12、B【解析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,ab,故正确;|b|=|d|,故正确;a+c=a,故正确;ad0,故错误;故选B【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1a1【解析】根据y的取
5、值范围可以求得相应的x的取值范围【详解】解:二次函数yx14x+4(x1)1,该函数的顶点坐标为(1,0),对称轴为:x,把y0代入解析式可得:x1,把y1代入解析式可得:x13,x11,所以函数值y的取值范围为0y1时,自变量x的范围为1x3,故可得:1a1,故答案为:1a1【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答14、 【解析】根据题目中的程序可以分别计算出y2和yn,从而可以解答本题【详解】y1=,y2=,y3=,yn=故答案为:【点睛】本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和yn15、【解析】
6、根据新定义的运算法则进行计算即可得.【详解】,84=,故答案为.16、【解析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论【详解】解:四边形是正方形,在中,为的中点,的周长为18,在中,根据勾股定理,得,在中,为的中点,又为的中位线,故答案为:.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中17、如等,答案不唯一【解析】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.18、70.【解析】由平角求出AED的度数
7、,由角平分线得出DEF的度数,再由平行线的性质即可求出AFE的度数.【详解】AEC40,AED180AEC140,EF平分AED,又ABCD,AFEDEF70.故答案为:70【点睛】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出DEF的度数是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)120,180;(2)y=-60x+7200,0x;x=时,y有最小值,此时y最小=-60+7200=6400(元)【解析】(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解; (2)根据培训总费用
8、=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围; 根据一次函数的性质结合自变量的取值范围即可求解【详解】(1)由题意,得,解得,故a,b的值分别是120,180;(2)由题意,得y=120x+180(40-x),化简得y=-60x+7200,普通时段的培训学时不会超过其他两个时段总学时的,x(40-x),解得x,又x0,0x;y=-60x+7200,k=-600,y随x的增大而减小,x取最大值时,y有最小值,0x;x=时,y有最小值,此时y最小=-60+7200=6400(元)【点睛】本题考查了一次函数的应用,二元一次方程组的应用,理解题
9、意得出数量关系是解题的关键20、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人【解析】【分析】根据等级A的人数及所占百分比即可得出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;总人数课外阅读时间满足的百分比即得所求【详解】由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的,所以:人,即本次调查的学生人数为200人;由条形图知:C级的人数为60人,所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人,D级的人数为:人,B所在扇形的圆心角
10、为:,补全条形图如图所示:;因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人,答:全校每周课外阅读时间满足的约有360人【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比21、(1)见解析;(2)A;(3)800人【解析】(1)用A组人数除以它所占的百分比求出样本容量,利用360乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【详解】解:(1)被调查
11、的学生人数为2440%=60人,D类别人数为60(24+12+15+3)=6人,则D类别的百分比为100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A,故答案为:A;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000(25%+10%+5%)=800人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1);(2)y=x2;(3)点Q到x轴的最短距离为1【解析】(1)先判断出m(n1)=6,进而得出结论;(
12、2)先求出点P到点A的距离和点P到直线y=1的距离建立方程即可得出结论;(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论【详解】(1)设m=x,n1=y,mnm=6,m(n1)=6,xy=6, (m,n1)在平面直角坐标系xOy中的轨迹是故答案为:;(2)点P(x,y)到点A(0,1),点P(x,y)到点A(0,1)的距离的平方为x2+(y1)2,点P(x,y)到直线y=1的距离的平方为(y+1)2,点P(x,y)到点A(0,1)的距离与到直线y=1的距离相等,x2+(y1)2=(y+1)2, (3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y
13、2),线段MN的中点为Q的纵坐标为 x24kx4b=0,x1+x2=4k,x1x2=4b, 点Q到x轴的最短距离为1【点睛】此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键23、(1)证明见解析;(2). 【解析】(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出
14、AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积【详解】证明:连接OD,BC为圆O的切线,ODCB,ACCB,ODAC,CAD=ODA,OA=OD,OAD=ODA,CAD=OAD,则 ;(2)解:连接ED,在RtACD中,AC=2,CD=1,根据勾股定理得:AD= ,CAD=OAD,ACD=ADE=90,ACDADE,即AD2=ACAE,AE=,即圆的半径为 ,则圆的面积为 【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键24、1【
15、解析】试题分析:根据相似三角形的判定与性质,可得答案试题解析:DEAB,BED=90,又C=90,BED=C又B=B,BEDBCA,DE=1考点:相似三角形的判定与性质25、或【解析】把y=x代入,解得x的值,然后即可求出y的值;【详解】把(1)代入(2)得:x2+x20,(x+2)(x1)0,解得:x2或1,当x2时,y2,当x1时,y1,原方程组的解是或【点睛】本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数26、(1)m=2;y=x+;(2)P点坐标是(,)【解析】(1)利用待定系数法求一次函数和反比例函数的解析式;(2)设点P的坐标为根据面积公式和已知条
16、件列式可求得的值,并根据条件取舍,得出点P的坐标【详解】解:(1)反比例函数的图象过点 点B(1,m)也在该反比例函数的图象上,1m=2,m=2;设一次函数的解析式为y=kx+b,由y=kx+b的图象过点A,B(1,2),则 解得: 一次函数的解析式为 (2)连接PC、PD,如图,设 PCA和PDB面积相等, 解得: P点坐标是 【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.27、(1)y=x2+x+3;D(1,);(2)P(3,)【解析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a
17、的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标【详解】解:(1)设抛物线的解析式为y=a(x+2)(x4),将点C(0,3)代入得:8a=3,解得:a=,y=x2+x+3=(x1)2+,抛物线的解析式为y=x2+x+3,且顶点D(1,);(2)B(4,0),C(0,3),BC的解析式为:y=x+3,D(1,),当x=1时,y=+3=,E(1,),DE=-=,设P(m,m2+m+3),则F(m,m+3),四边形DEFP是平行四边形,且DEFP,DE=FP,即(m2+m+3)(m+3)=,解得:m1=1(舍),m2=3,P(3,)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中