《内蒙古巴彦淖尔市杭锦全旗达标名校2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古巴彦淖尔市杭锦全旗达标名校2022-2023学年中考数学猜题卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在下面的四个几何体中,左视图与主视图不相同的几何体是()ABCD2矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )A(5,5)B(5,4)C(6,4)D(6,5)3如图,已知12,要使ABDACD,需从下列条件中增加一个,错误的选法是( )AADBADCBBCCABACDDBDC4下面四个几何体: 其中,俯视图是四边形的几何体个数是()A1B2C3D45对于数据:6,3,4,7,6,0,1下列判断中正确的是( )A这组数据的平均数是6,中位数是6B这组数据的平均数是6,中位数是7C这组数据
3、的平均数是5,中位数是6D这组数据的平均数是5,中位数是76如图,在扇形CAB中,CA=4,CAB=120,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()ABC10D7若ab0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()ABCD8下列一元二次方程中,有两个不相等实数根的是()Ax2+6x+9=0Bx2=xCx2+3=2xD(x1)2+1=09方程有两个实数根,则k的取值范围是( )Ak1Bk1Ck1Dk110如图,ABC在平面直角坐标系中第二象限内,顶点A的坐标是(2,3),先把ABC向右平移6个单位得到A1B1C1,再作A1B1
4、C1关于x轴对称图形A2B2C2,则顶点A2的坐标是()A(4,3)B(4,3)C(5,3)D(3,4)二、填空题(共7小题,每小题3分,满分21分)11已知一个正六边形的边心距为,则它的半径为_ 12如图,在RtABC中,ACB=90,AC=4,BC=3,点D为AB的中点,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,则DB长为_13若a:b=1:3,b:c=2:5,则a:c=_.14已知抛物线yx2x1与x轴的一个交点为(m,0),则代数式m2m2017的值为_15已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_度16一个圆锥的侧面展开图是半
5、径为8 cm、圆心角为120的扇形,则此圆锥底面圆的半径为_17在计算器上,按照下面如图的程序进行操作:如表中的x与y分别是输入的6个数及相应的计算结果:上面操作程序中所按的第三个键和第四个键分别是_、_x321012y531135三、解答题(共7小题,满分69分)18(10分)计算:sin30tan60+.19(5分)对于方程1,某同学解法如下:解:方程两边同乘6,得3x2(x1)1 去括号,得3x2x21 合并同类项,得x21 解得x3 原方程的解为x3 上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程20(8分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲
6、地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距 千米,慢车速度为 千米/小时(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式(4)直接写出两车相距300千米时的x值21(10分)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当
7、点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标22(10分)如图,矩形ABCD中,AB4,AD5,E为BC上一点,BECE32,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PFBC交直线AE于点F.(1)线段AE_;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的F恰好与直线AB、BC都相切?并求此时F的半径23(12分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋
8、的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.24(14分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正
9、好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG6米,GC53米请你根据以上数据,计算舍利塔的高度AB参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B【点睛】本题主要考查了几何题的三视图
10、,解题关键是能正确画出几何体的三视图.2、B【解析】由矩形的性质可得ABCD,AB=CD,AD=BC,ADBC,即可求点D坐标【详解】解:四边形ABCD是矩形ABCD,AB=CD,AD=BC,ADBC,A(1,4)、B(1,1)、C(5,1),ABCDy轴,ADBCx轴点D坐标为(5,4)故选B【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.3、D【解析】由全等三角形的判定方法ASA证出ABDACD,得出A正确;由全等三角形的判定方法AAS证出ABDACD,得出B正确;由全等三角形的判定方法SAS证出ABDACD,得出C正确由全等三角形的判定方法得出D不正确;【详解】A正
11、确;理由:在ABD和ACD中,1=2,AD=AD,ADB=ADC,ABDACD(ASA);B正确;理由:在ABD和ACD中,1=2,B=C,AD=ADABDACD(AAS);C正确;理由:在ABD和ACD中,AB=AC,1=2,AD=AD,ABDACD(SAS);D不正确,由这些条件不能判定三角形全等;故选:D【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键4、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B考点:简单几何体的三视图5、C【解析】根据题目中的数据可以按照从小
12、到大的顺序排列,从而可以求得这组数据的平均数和中位数【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是: 中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.6、D【解析】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,推出APDABP,得到BP=2PD,于是得到2PD+PB
13、=BP+PBPP,根据勾股定理得到PP=,求得2PD+PB4,于是得到结论【详解】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,=2,APDABP,BP=2PD,2PD+PB=BP+PBPP,PP=,2PD+PB4,2PD+PB的最小值为4,故选D【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键7、D【解析】根据ab0及正比例函数与反比例函数图象的特点,可以从a0,b0和a0,b0两方面分类讨论得出答案【详解】解:ab0,分两种情况:(1)当a0,b0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象
14、在第二、四象限,无此选项;(2)当a0,b0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题8、B【解析】分析:根据一元二次方程根的判别式判断即可详解:A、x2+6x+9=0.=62-49=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.=(-1)2-410=10.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.=(-2)2-413=-80,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B点睛:本题
15、考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根9、D【解析】当k=1时,原方程不成立,故k1,当k1时,方程为一元二次方程此方程有两个实数根,解得:k1综上k的取值范围是k1故选D10、A【解析】直接利用平移的性质结合轴对称变换得出对应点位置【详解】如图所示:顶点A2的坐标是(4,-3)故选A【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键二、填空题(共7小题,每小题3分,满分21分)11、2【解析】试题分析:设正六边形的中心
16、是O,一边是AB,过O作OGAB与G,在直角OAG中,根据三角函数即可求得OA解:如图所示,在RtAOG中,OG=,AOG=30,OA=OGcos 30=2;故答案为2.点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.12、【解析】试题分析:解:在RtABC中,ACB=90,AC=4,BC=3,AB=5,点D为AB的中点,CD=AD=BD=AB=2.5,过D作DEBC,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,CD=AD=AD,DE=1.5,AE=CE=2,BC=3,BE=1,BD=,故答
17、案为考点:旋转的性质13、21【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(12):(32)=2:6;而b、c的比为:2:5=(23):(53)=6:1;,所以a、c两数的比为2:1详解:a:b=1:3=(12):(32)=2:6;b:c=2:5=(23):(53)=6:1;,所以a:c=2:1;故答案为2:1点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比14、1【解析】把点(m,0)代入yx2x1,求出m2m1,代入即可求出答案【详解】二次函数yx2x1的图象与x轴的一个交点为(m,0),m
18、2m10,m2m1,m2m+20171+20171故答案为:1【点睛】本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2m1,难度适中15、1【解析】先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论【详解】设多边形的边数为n.因为正多边形内角和为 ,正多边形外角和为 根据题意得: 解得:n=8.这个正多边形的每个外角 则这个正多边形的每个内角是 故答案为:1.【点睛】考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.16、cm【解析】试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解设此圆锥的底面半径为r,根据圆锥的侧面展
19、开图扇形的弧长等于圆锥底面周长可得,2r=, r=cm考点:圆锥侧面展开扇形与底面圆之间的关系17、, 【解析】根据表格中数据求出x、y之间的关系,即可得出答案【详解】解:根据表格中数据分析可得:x、y之间的关系为:y=2x+1,则按的第三个键和第四个键应是“+”“1”故答案为+,1【点睛】此题考查了有理数的运算,要求同学们能熟练应用计算器,会用科学记算器进行计算三、解答题(共7小题,满分69分)18、 【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=.19、(1)错误步骤在第步(2)x4.【解析】(1)第步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去
20、括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可【详解】解:(1)方程两边同乘6,得3x2(x1)6 去括号,得3x2x+26 错误步骤在第步(2)方程两边同乘6,得3x2(x1)6去括号,得3x2x+26合并同类项,得x+26解得x4原方程的解为x4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因20、(1)10, 1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x10;(4)当x=2小时或x=4小时时,两车相距300千米【解析】(1)由当x=0时y=10可得出甲乙两
21、地间距,再利用速度=两地间距慢车行驶的时间,即可求出慢车的速度;(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;(4)利用待定系数法求出当0x4时y与x之间的函数关系式,将y=300分别代入0x4时及4x时的函数关系式中求出x值,此题得解【详解】解:(1)当x=0时,y=10,甲乙两地相距10千米1010=1(千米/小时)故答案为10;1(2)设快车的速度为a千米/小时,根据题意得:4(1+a)=10,
22、解得:a=2答:快车速度是2千米/小时(3)快车到达甲地的时间为102=(小时),当x=时,两车之间的距离为1=400(千米)设当4x时,y与x之间的函数关系式为y=kx+b(k0),该函数图象经过点(4,0)和(,400),解得:,从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x10(4)设当0x4时,y与x之间的函数关系式为y=mx+n(m0),该函数图象经过点(0,10)和(4,0),解得:,y与x之间的函数关系式为y=150x+10当y=300时,有150x+10=300或150x10=300,解得:x=2或x=4当x=2小时或x=4小时时,两车相距300千米【点睛】本题
23、考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值21、 (1)抛物线的解析式为:y=x1+x+1(1)存在,P1(,2),P1(,),P3(,)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m
24、、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=SBCD+SCEF+SBEF可求出S与a的关系式,由二次函数的性质就可以求出结论试题解析:(1)抛物线y=x1+mx+n经过A(1,0),C(0,1)解得:,抛物线的解析式为:y=x1+x+1;(1)y=x1+x+1,y=(x
25、)1+,抛物线的对称轴是x=OD=C(0,1),OC=1在RtOCD中,由勾股定理,得CD=CDP是以CD为腰的等腰三角形,CP1=CP1=CP3=CD作CHx轴于H,HP1=HD=1,DP1=2P1(,2),P1(,),P3(,);(3)当y=0时,0=x1+x+1x1=1,x1=2,B(2,0)设直线BC的解析式为y=kx+b,由图象,得,解得:,直线BC的解析式为:y=x+1如图1,过点C作CMEF于M,设E(a,a+1),F(a,a1+a+1),EF=a1+a+1(a+1)=a1+1a(0x2)S四边形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN,=+a(a1+
26、1a)+(2a)(a1+1a),=a1+2a+(0x2)=(a1)1+a=1时,S四边形CDBF的面积最大=,E(1,1)考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值22、(1)5;(2);(3)时,半径PF;t16,半径PF12.【解析】(1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PFBE知,据此求得AF=t,再分0t4和t4两种情况分别求出EF即可得;(3)由以点F为圆心的F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0t4、t4这三种情况分别求解可得【详解】(1)四边形ABCD为矩形
27、,BCAD5,BECE32,则BE3,CE2,AE5.(2)如图1,当点P在线段AB上运动时,即0t4,PFBE,即,AFt,则EFAEAF5t,即y5t(0t4);如图2,当点P在射线AB上运动时,即t4,此时,EFAFAEt5,即yt5(t4);综上,;(3)以点F为圆心的F恰好与直线AB、BC相切时,PFFG,分以下三种情况:当t0或t4时,显然符合条件的F不存在;当0t4时,如解图1,作FGBC于点G,则FGBP4t,PFBC,APFABE,即,PFt,由4tt可得t,则此时F的半径PF;当t4时,如解图2,同理可得FGt4,PFt,由t4t可得t16,则此时F的半径PF12.【点睛】
28、本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质23、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可试题解析:(1)根据题意,用一月份A款的数量乘以:50=40(双)即一月份B
29、款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:则三月份的总销售额是:40065+50026=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋考点:1.折线统计图;2.条形统计图24、55米【解析】由题意可知EDCEBA,FHCFBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.【详解】EDCEBA,FHCFBA,,即,AC=106米,又 ,AB=55米.答:舍利塔的高度AB为55米【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题