内蒙古呼和浩特回民中学2023届高三第三次测评数学试卷含解析.doc

上传人:茅**** 文档编号:87846324 上传时间:2023-04-18 格式:DOC 页数:18 大小:1.86MB
返回 下载 相关 举报
内蒙古呼和浩特回民中学2023届高三第三次测评数学试卷含解析.doc_第1页
第1页 / 共18页
内蒙古呼和浩特回民中学2023届高三第三次测评数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《内蒙古呼和浩特回民中学2023届高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古呼和浩特回民中学2023届高三第三次测评数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若为虚数单位,则复数的共轭复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限2已知向量,则与的夹角为( )ABCD3关于圆周率,数学发展史上出现过许多很有创意

2、的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD4已知集合,则()ABCD5设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为( )AB40C16D7盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )A,B,C,D,8已知

3、函数,其中为自然对数的底数,若存在实数,使成立,则实数的值为( )ABCD9若复数是纯虚数,则( )A3B5CD10执行如图所示的程序框图,当输出的时,则输入的的值为( )A-2B-1CD11函数与的图象上存在关于直线对称的点,则的取值范围是( )ABCD12函数在上为增函数,则的值可以是( )A0BCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,已知圆,圆直线与圆相切,且与圆相交于,两点,则弦的长为_14为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为

4、二等品,其余均为三等品,则样本中三等品的件数为_15设实数x,y满足,则点表示的区域面积为_.16双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的右顶点为,点在轴上,线段与椭圆的交点在第一象限,过点的直线与椭圆相切,且直线交轴于.设过点且平行于直线的直线交轴于点.()当为线段的中点时,求直线的方程;()记的面积为,的面积为,求的最小值.18(12分)已知两数(1)当时,求函数的极值点;(2)当时,若恒成立,求的最大值19(12分)已知函数为实数)

5、的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时, .20(12分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.21(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.22(10分)已知,分别是三个内角,的对边,(1)求;(2)若,求,参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由共轭复数的定义得到,通过三角函数值的正

6、负,以及复数的几何意义即得解【详解】由题意得,因为,所以在复平面内对应的点位于第二象限故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.2、B【解析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,由于向量夹角范围为:,.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.3、D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的

7、面积,即可估计的值【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.4、A【解析】根据对数性质可知,再根据集合的交集运算即可求解.【详解】,集合,由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,

8、集合交集的简单运算,属于基础题.5、B【解析】先解不等式化简两个条件,利用集合法判断充分必要条件即可【详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件故选:B【点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.6、D【解析】如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,故.故选:.【点睛】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.7、C【解析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项

9、.【详解】表示取出的为一个白球,所以.表示取出一个黑球,所以.表示取出两个球,其中一黑一白,表示取出两个球为黑球,表示取出两个球为白球,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.8、A【解析】令f(x)g(x)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是减函数,(1,+)上是增函数,故当x=1时,y有最小值10=1,而exa+4eax4,(当且仅当exa=4eax,即x=a+ln1时,等号成立);故f(x)g(x)3(当且仅当等号同时成立时,等号成立);故x=a+ln1=1,即

10、a=1ln1故选:A9、C【解析】先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.10、B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;综上选B.11、C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知

11、,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题12、D【解析】依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【

12、解析】利用直线与圆相切求出斜率,得到直线的方程,几何法求出【详解】解:直线与圆相切,圆心为由,得或,当时,到直线的距离,不成立,当时,与圆相交于,两点,到直线的距离,故答案为【点睛】考查直线与圆的位置关系,相切和相交问题,属于中档题14、100.【解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数详解:由题意得,三等品的长度在区间,和内,根据频率分布直方图可得三等品的频率为,样本中三等品的件数为.点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误15、【解析】先画出满足条件的平面区域,求出交点坐标,利

13、用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.16、【解析】根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【详解】设,交圆于点,所以易知:即.故答案为:【点睛】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()直线的方程为()【解析】(1)设点,利用中点坐标公式表示点B,并代入椭圆方程解得,从而求

14、出直线的方程;(2)设直线的方程为:,表示点,然后联立方程,利用相切得出,然后求出切点,再设出设直线的方程,求出点,利用两点坐标,求出直线的方程,从而求出,最后利用以上已求点的坐标表示面积,根据基本不等式求最值即可.【详解】解:()由椭圆,可得:由题意:设点,当为的中点时,可得:代入椭圆方程,可得:所以:所以.故直线的方程为.()由题意,直线的斜率存在且不为0,故设直线的方程为:令,得:,所以:.联立:,消,整理得:.因为直线与椭圆相切,所以.即.设,则,所以.又直线直线,所以设直线的方程为:.令,得,所以:.因为,所以直线的方程为:.令,得,所以:.所以.又因为.所以(当且仅当,即时等号成立

15、)所以.【点睛】本小题主要考查直线和椭圆的位置关系,考查直线方程以及求椭圆中的最值问题,最值问题一般是把目标式求出,结合目标式特点选用合适的方法求解,侧重考查数学运算的核心素养,本题利用了基本不等式求最小值的方法,运算量较大,属于难题.18、(1)唯一的极大值点1,无极小值点(2)1【解析】(1)求出导函数,求得的解,确定此解两侧导数值的正负,确定极值点;(2)问题可变形为恒成立,由导数求出函数的最小值,时,无最小值,因此只有,从而得出的不等关系,得出所求最大值【详解】解:(1)定义域为,当时,令得,当所以在上单调递增,在上单调递减,所以有唯一的极大值点,无极小值点(2)当时,若恒成立,则恒成

16、立,所以恒成立,令,则,由题意,函数在上单调递减,在上单调递增,所以,所以所以,所以,故的最大值为1【点睛】本题考查用导数求函数极值,研究不等式恒成立问题在求极值时,由确定的不一定是极值点,还需满足在两侧的符号相反不等式恒成立深深转化为求函数的最值,这里分离参数法起关键作用19、 (1) ;函数的单调递减区间为,单调递增区间为;(2)详见解析.【解析】试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;(2)由(1)得 根据由,整理得,设,转化为函数的最值,即可作出证明.试题解析:(1)由题得,函数的定义域为, ,因为曲线在点处的切线方

17、程为,所以解得.令,得,当时, , 在区间内单调递减;当时, , 在区间内单调递增.所以函数的单调递减区间为,单调递增区间为.(2)由(1)得, .由,得,即.要证,需证,即证,设,则要证,等价于证: .令,则,在区间内单调递增, ,即,故.20、(1);(2).【解析】(1)利用导数的几何意义求出切线的斜率,再求出切点坐标即可得在点处的切线方程;(2)令,然后利用导数并根据a的情况研究函数的单调性和最值.【详解】(1),又,切线方程为,即.(2)令,若,则在上单调递减,又,恒成立,在上单调递减,又,恒成立.若,令,易知与在上单调递减,在上单调递减,当即时,在上恒成立,在上单调递减,即在上单调

18、递减,又,恒成立,在上单调递减,又,恒成立,当即时,使,在递增,此时,在递增,不合题意.综上,实数的取值范围是.【点睛】本题主要考查导数的几何意义及构造函数解决含参数的不等式恒成立时求参数的取值范围问题,第二问的难点是构造函数后二次求导问题,对分类讨论思想及化归与等价转化思想要求较高,难度较大,属拔高题.21、【解析】将圆的极坐标方程化为直角坐标方程,直线的参数方程化为普通方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求实数的值.【详解】由,得, 即圆的方程为,又由消,得, 直线与圆相切,【点睛】本题重点考查方程的互化,考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离等于半径,研究直线与圆相切.22、(1); (2),或,.【解析】(1)利用正弦定理,转化原式为,结合,可得,即得解;(2)由余弦定理,结合题中数据,可得解【详解】(1)由及正弦定理得因为,所以,代入上式并化简得由于,所以又,故(2)因为,由余弦定理得即,所以而,所以,为一元二次方程的两根所以,或,【点睛】本题考查了正弦定理,余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁