《内蒙古乌兰浩特市卫东中学2023年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古乌兰浩特市卫东中学2023年中考数学仿真试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1将抛物线y2x2向左平移3个单位得到的抛物线的解析式是( )Ay2x2+3By2x23Cy2(x+3)2Dy2(x3)22下列函数中,y关于x的二次函数是( )Ayax2+bx+cByx(x1)Cy=Dy(x1)2x23为了解某小区小孩暑期的
2、学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A极差是3.5B众数是1.5C中位数是3D平均数是34如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A2mB mC3mD6m5某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A B C D6如图,在ABC中,点D是边AB上的一点,ADCACB,AD2,BD6,则边AC的长为()A2B4C6D87如图,平面直角坐标系中,矩形ABCD的边AB:BC3:
3、2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y的图象经过点D,则k值为()A14B14C7D78据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )A15mB17mC18mD20m9等腰三角形底角与顶角之间的函数关系是()A正比例函数B一次函数C反比例函数D二次函数10x=1是关于x的方程2xa=0的解,则a的值是()A2B2C1D111下列计算正确的是( ).A(x+y)2=x2+y2B(xy2)3= x3y6Cx6x3=
4、x2D=212二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G若AD=DF=FB,则四边形DFGE的面积为_14如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积_m115已知一个正数的平方根是3x2和5x6,则这个数是_16如图,在ABC中,C=90,AC=BC=,将ABC绕点A顺时针方向旋转60到ABC的位置,连接CB,则CB= _17已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数
5、的解析式为_18如图,CD是RtABC斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于_度三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积20(6分)计算:21(6分)解不等式组:,并把解集在数轴上表示出来.22(8分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1点P是AC上的
6、一个动点,过点P作MNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上)设AP的长为x(0x4),AMN的面积为y建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y0 0(3)观察所画的图象,写出该函数的两条性质: 23(8分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是_经过几秒,点M、点N分别到原点O的距离相等?
7、24(10分)在平面直角坐标系中,一次函数的图象与反比例函数(k0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(2,3)求一次函数和反比例函数解析式若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求ABF的面积根据图象,直接写出不等式的解集25(10分)某校组织了一次初三科技小制作比赛,有ABC,D四个班共提供了100件参赛作品. C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中 . (1)B班参赛作品有多少件?(2)请你将图的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,
8、B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .26(12分)已知:如图1在RtABC中,C=90,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0t5),解答下列问题:(1)当为t何值时,PQBC;(2)设AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQPC为菱形?若存在,求出此时t的值;若不存在,请
9、说明理由27(12分)已知:如图,在RtABO中,B=90,OAB=10,OA=1以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,P与x轴的另一交点为N,点M在P上,且满足MPN=60P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积(探究)当P和ABO的边所在的直线相切时,求点P的坐标(拓展)当与RtABO的边有两个交点时,请你直接写出t的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的
10、四个选项中,只有一项是符合题目要求的)1、C【解析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y2x2向左平移3个单位得到的抛物线的解析式是y2(x3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.2、B【解析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意; B
11、. y=x(x1)=x2-x,是二次函数,故符合题意;C. 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x1)2x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a0)的函数叫做二次函数,据此求解即可.3、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为(2.5+3)=2.75,此选项错误
12、;D.平均数为:(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.4、C【解析】依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,三根木条要组成三角形,x-x10-2x0,AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.7、B【解析】过点D作DFx轴于点F
13、,则AOB=DFA=90,OAB+ABO=90,四边形ABCD是矩形,BAD=90,AD=BC,OAB+DAF=90,ABO=DAF,AOBDFA,OA:DF=OB:AF=AB:AD,AB:BC=3:2,点A(3,0),B(0,6),AB:AD=3:2,OA=3,OB=6,DF=2,AF=4,OF=OA+AF=7,点D的坐标为:(7,2),k,故选B.8、C【解析】连结OA,如图所示: CDAB,AD=BD=AB=12m.在RtOAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故选C.9、B【解析】根据一次函数的定义,可得答案【详解】设等腰三角形的底角为y,顶角为x,由题意
14、,得x+2y=180,所以,y=x+90,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.10、B【解析】试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1故选B.考点:一元一次方程的解.11、D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6x3=x3,C错误;=2,D正确;故选D点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌
15、握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键12、D【解析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】先根据题意可证得ABCADE,ABCAFG,再根据ABC的面积为6分别求出ADE与AFG的面积,则四边形DFGE的面积=SAFG-SADE.【详解】解:DEBC,,ADEABC,AD=DF=FB,=()1,即=()1,SADE=;FGBC,AFGABC,=()1,即=()1,S
16、AFG=;S四边形DFGE= SAFG- SADE=-=1.故答案为:1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.14、2【解析】设与墙平行的一边长为xm,则另一面为 ,其面积=,最大面积为 ;即最大面积是2m1故答案是2【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单15、【解析】试题解析:根据题意,得:解得:故答案为【点睛】:一个正数有2个平方根,它们互为相
17、反数.16、【解析】如图,连接BB,ABC绕点A顺时针方向旋转60得到ABC,AB=AB,BAB=60,ABB是等边三角形,AB=BB,在ABC和BBC中,ABCBBC(SSS),ABC=BBC,延长BC交AB于D,则BDAB,C=90,AC=BC=,AB=2,BD=2=,CD=2=1,BC=BDCD=1.故答案为:1.点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC在等边三角形的高上是解题的关键,也是本题的难点 17、y=【解析】解:设这个反比例函数的表达式为y=P1(x1,y1),P2(x2,y2)是同一
18、个反比例函数图象上的两点,x1y1=x2y2=k,=,=,=,=,k=2(x2x1)x2=x1+2,x2x1=2,k=22=4,这个反比例函数的解析式为:y=故答案为y=点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数同时考查了式子的变形18、30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则A=30.考点:折叠图形的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2) 【解析】(1)连接OC,如图,利
19、用切线的性质得COCD,则ADCO,所以DAC=ACO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出COE=60,然后根据扇形的面积公式,利用S阴影=SCOES扇形COB进行计算即可【详解】解:(1)连接OC,如图,CD与O相切于点E,COCD,ADCD,ADCO,DAC=ACO,OA=OC,ACO=CAO,DAC=CAO,即AC平分DAB;(2)设O半径为r,在RtOEC中,OE2+EC2=OC2,r2+27=(r+3)2,解得r=3,OC=3,OE=6,cosCOE=,COE=60,S阴
20、影=SCOES扇形COB=33【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式20、5【解析】本题涉及零指数幂、负整数指数幂、绝对值、乘方四个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式=4-80.125+1+1=4-1+2=5【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算21、x【解析】分析:分别求解两个不等式,然后按照不等
21、式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:,由得,x2;由得,x,故此不等式组的解集为:x在数轴上表示为:点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键22、 (1) y=;(1)见解析;(3)见解析【解析】(1)根据线段相似的关系得出函数关系式(1)代入中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x当0x1时MNBDAPMAODMP=AC垂直平分MNPN=PM=xMN=xy=APMN=当1x4时,P在线段OC上,CP=4xCPMCODPM=MN=1
22、PM=4xy=y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0x1时,y随x的增大而增大1、当1x4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.23、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论试题解析:(1)OB=3OA=
23、1,B对应的数是1(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x点M、点N在点O两侧,则2-3x=2x,解得x=2;点M、点N重合,则,3x-2=2x,解得x=2所以经过2秒或2秒,点M、点N分别到原点O的距离相等24、(1)yx+,y;(2)12;(3) x2或0x4.【解析】(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求ABF的面积;(3)直接根据图象可得【详解】(1)一次函数yx+b的图象与反比例函数y (k0)图象交于A(3,2)、B两点,3(2)+b,k236b,k6一次函数
24、解析式y,反比例函数解析式y.(2)根据题意得: ,解得: ,SABF4(4+2)12(3)由图象可得:x2或0x4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键25、(1)25件;(2)见解析;(3)B班的获奖率高;(4).【解析】试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率试题解析:(1)由题意可得:100(135%20%
25、20%)=25(件),答:B班参赛作品有25件;(2)C班提供的参赛作品的获奖率为50%,C班的参赛作品的获奖数量为:10020%50%=10(件),如图所示:;(3)A班的获奖率为:100%=40%,B班的获奖率为:100%=44%,C班的获奖率为:=50%;D班的获奖率为:100%=40%,故C班的获奖率高;(4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=考点:1列表法与树状图法;2扇形统计图;3条形统计图26、(1)当t=时,PQBC;(2)(t)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQPC为菱形【
26、解析】(1)只要证明APQABC,可得=,构建方程即可解决问题;(2)过点P作PDAC于D,则有APDABC,理由相似三角形的性质构建二次函数即可解决问题;(3)存在由APOABC,可得=,即=,推出OA=(5t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在RtABC中,AB=10,BP=2t,AQ=t,则AP=102t,PQBC,APQABC,=,即=,解得t=,当t=时,PQBC(2)过点P作PDAC于D,则有APDABC,=,即=,PD=6t,y=t(6t)=(t)2+,当t=时,y有最大值为(3)存在理由:连接PP,交AC于点O四边形PQPC为菱形,OC=CQ,APOABC
27、,=,即=,OA=(5t),8(5t)=(8t),解得t=,当t=时,四边形PQPC为菱形【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题27、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析【解析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角
28、三角形的两边有两个交点时的分界点,即可得出结论【详解】发现(3)P(2,0),OP=2OA=3,AP=3,的长度为故答案为;(2)设P半径为r,则有r=23=3,当t=2时,如图3,点N与点A重合,PA=r=3,设MP与AB相交于点Q在RtABO中,OAB=30,MPN=60PQA=90,PQPA,AQ=APcos30,S重叠部分=SAPQPQAQ即重叠部分的面积为探究如图2,当P与直线AB相切于点C时,连接PC,则有PCAB,PC=r=3OAB=30,AP=2,OP=OAAP=32=3;点P的坐标为(3,0); 如图3,当P与直线OB相切于点D时,连接PD,则有PDOB,PD=r=3,PDA
29、B,OPD=OAB=30,cosOPD,OP,点P的坐标为(,0);如图2,当P与直线OB相切于点E时,连接PE,则有PEOB,同可得:OP;点P的坐标为(,0); 拓展t的取值范围是2t3,2t4,理由:如图4,当点N运动到与点A重合时,与RtABO的边有一个公共点,此时t=2;当t2,直到P运动到与AB相切时,由探究得:OP=3,t3,与RtABO的边有两个公共点,2t3如图6,当P运动到PM与OB重合时,与RtABO的边有两个公共点,此时t=2;直到P运动到点N与点O重合时,与RtABO的边有一个公共点,此时t=4;2t4,即:t的取值范围是2t3,2t4【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键