《内蒙古呼伦贝尔市名校2023届中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古呼伦贝尔市名校2023届中考数学考前最后一卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A0.4108B4108C4108D41082如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下
2、列结论:3a+b0;-1a-;对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+c=n-1有两个不相等的实数根其中结论正确的个数为( )A1个 B2个 C3个 D4个3随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD4运用图形变化的方法研究下列问题:如图,AB是O的直径,CD,EF是O的弦,且ABCDEF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )ABCD5如图,直线a,b被直线c所截,若ab,1=50,3=120,则2的度数为()A80B70C60D506如图所示的几何体,它的左视图与俯视图都正确的是( )ABCD7如图,已知是中的边上的
3、一点,的平分线交边于,交于,那么下列结论中错误的是( )ABACBDABBFABECCBDFBECDBDFBAE8整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足( ).ABCD9如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD10如图,在ABC中,AD是BC边的中线,ADC=30,将ADC沿AD折叠,使C点落在C的位置,若BC=4,则BC的长为()A2B2C4D3二、填空题(本大题共6个小题,每小题3分,共18分)11将数轴按如图所示从某
4、一点开始折出一个等边三角形ABC,设点A表示的数为x3,点B表示的数为2x+1,点C表示的数为4,若将ABC向右滚动,则x的值等于_,数字2012对应的点将与ABC的顶点_重合12如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有_个,第n幅图中共有_个13若关于x的方程x2+xa+0有两个不相等的实数根,则满足条件的最小整数a的值是( )A1B0C1D214若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_三角形15某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 _元。16已知:如
5、图,AB为O的直径,点C、D在O上,且BC6cm,AC8cm,ABD45则图中阴影部分的面积是_. 三、解答题(共8题,共72分)17(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交BC的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c218(8分)为了
6、贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型 目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案
7、,并求出最少费用19(8分)综合与实践旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD矩形ABCD,它们各自对角线的交点重合于点O,连接AA,CC请你帮他们解决下列问题:观察发现:(1)如图1,若ABAB,则AA与CC的数量关系是_;操作探究:(2)将图1中的矩形ABCD保持不动,矩形ABCD绕点O逆时针旋转角度(090),如图2,在矩形ABCD旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形ABCD绕点O旋转至AAAD时,若AB=6,BC=8,AB=3,
8、求AA的长20(8分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BCy轴,垂足为点C,连结AB,AC求该反比例函数的解析式;若ABC的面积为6,求直线AB的表达式21(8分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F(1)求反比例函数的解析式;(2)求OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b的解集22(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天
9、可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元23(12分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号、,摆成如图所示的一个等式,然后翻开纸片是4x1+5x+6,翻开纸片是3x1x1解答下列问题求纸片上的代数式;若x是方程1xx9的
10、解,求纸片上代数式的值24某商场一种商品的进价为每件30元,售价为每件40元每天可以销售48件,为尽快减少库存,商场决定降价促销若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】科学记数法的表示形式为a10 的形式,其中1a|1时,n是正数;当原数的绝对值1时,n是负数.【详解】0.000 000 04=410,故选C【点睛】此题考查科学记数法,难度不大2、D【解析】利用抛物线开口方向得到a0,再由抛
11、物线的对称轴方程得到b=-2a,则3a+b=a,于是可对进行判断;利用2c3和c=-3a可对进行判断;利用二次函数的性质可对进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对进行判断【详解】抛物线开口向下,a0,而抛物线的对称轴为直线x=-=1,即b=-2a,3a+b=3a-2a=a0,所以正确;2c3,而c=-3a,2-3a3,-1a-,所以正确;抛物线的顶点坐标(1,n),x=1时,二次函数值有最大值n,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物线的顶点坐标(1,n),抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+
12、c=n-1有两个不相等的实数根,所以正确故选D【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点3、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】
13、随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.4、A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD、OE、OF、DGCG是圆的直径,CDG=90,则DG=8,又EF=8,DG=
14、EF,S扇形ODG=S扇形OEF,ABCDEF,SOCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=52=,故选A【点睛】本题考查扇形面积的计算,圆周角定理本题中找出两个阴影部分面积之间的联系是解题的关键5、B【解析】直接利用平行线的性质得出4的度数,再利用对顶角的性质得出答案【详解】解:ab,1=50,4=50,3=120,2+4=120,2=120-50=70故选B【点睛】此题主要考查了平行线的性质,正确得出4的度数是解题关键6、D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径
15、的矩形,故答案选D考点:D.7、C【解析】根据相似三角形的判定,采用排除法,逐项分析判断【详解】BAD=C,B=B,BACBDA故A正确BE平分ABC,ABE=CBE,BFABEC故B正确BFA=BEC,BFD=BEA,BDFBAE故D正确而不能证明BDFBEC,故C错误故选C【点睛】本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角8、D【解析】根据acb,可得c的最小值是1,根据有理数的加法,可得答案【详解】由acb,得:c最小值是1,当c=1时,c+d=1+d,1+d0,解得:d1,db故选D【点睛】本题考查了实数与数轴,利用acb得出c
16、的最小值是1是解题的关键9、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键10、A【解析】连接CC,将
17、ADC沿AD折叠,使C点落在C的位置,ADC=30,ADC=ADC=30,CD=CD,CDC=ADC+ADC=60,DCC是等边三角形,DCC=60,在ABC中,AD是BC边的中线,即BD=CD,CD=BD,DBC=DCB=CDC=30,BCC=DCB+DCC=90,BC=4,BC=BCcosDBC=4=2,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1 C 【解析】将数轴按如图所示从某一点开始折出一个等边三角形
18、ABC,设点A表示的数为x1,点B表示的数为2x+1,点C表示的数为4,4(2x+1)=2x+1(x1);1x=9,x=1故A表示的数为:x1=11=6,点B表示的数为:2x+1=2(1)+1=5,即等边三角形ABC边长为1,数字2012对应的点与4的距离为:2012+4=2016,20161=672,C从出发到2012点滚动672周,数字2012对应的点将与ABC的顶点C重合故答案为1,C点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.12、7 2n1 【
19、解析】根据题意分析可得:第1幅图中有1个,第2幅图中有22-1=3个,第3幅图中有23-1=5个,可以发现,每个图形都比前一个图形多2个,继而即可得出答案【详解】解:根据题意分析可得:第1幅图中有1个第2幅图中有22-1=3个第3幅图中有23-1=5个第4幅图中有24-1=7个可以发现,每个图形都比前一个图形多2个故第n幅图中共有(2n-1)个故答案为7;2n-1点睛:考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律13、D【解析】根据根的判别式得到关于a的方程,求解后可得到答案.【详解】关于x的方程有两个不相等的实数根,则 解得: 满足条件的最小整数的值为2
20、.故选D.【点睛】本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.14、直角三角形【解析】根据题意,画出图形,用垂直平分线的性质解答【详解】点O落在AB边上,连接CO,OD是AC的垂直平分线,OC=OA,同理OC=OB,OA=OB=OC,A、B、C都落在以O为圆心,以AB为直径的圆周上,C是直角这个三角形是直角三角形【点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.15、500【解析】设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.【详解】解:设该品牌时装的进价为x元,根据题意得:100090%-x=8
21、0%x,解得:x=500,则该品牌时装的进价为500元.故答案为:500.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.16、()cm2 【解析】S阴影=S扇形-SOBD= 52-55=.故答案是: .三、解答题(共8题,共72分)17、见解析.【解析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,S五边形ACBED=SACB+SABE+SADE=ab+b1+ab,又S五边形ACBED=SACB+SABD+SBDE=ab+c1+a(b-a),ab
22、+b1+ab=ab+c1+a(b-a),a1+b1=c1【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键18、(1)大货车用8辆,小货车用7辆;(2)y=100x+1(3)见解析. 【解析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为7-(10-x)辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案【详解】(1
23、)设大货车用x辆,小货车用y辆,根据题意得:解得:大货车用8辆,小货车用7辆(2)y=800x+900(8-x)+400(10-x)+6007-(10-x)=100x+1(3x8,且x为整数)(3)由题意得:12x+8(10-x)100,解得:x5,又3x8,5x8且为整数,y=100x+1,k=1000,y随x的增大而增大,当x=5时,y最小,最小值为y=1005+1=9900(元)答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村最少运费为9900元19、(1)AA=CC;(2)成立,证明见解析;(3)AA=【解析】(1)连接AC、AC,根据题意得
24、到点A、A、C、C在同一条直线上,根据矩形的性质得到OA=OC,OA=OC,得到答案;(2)连接AC、AC,证明AOACOC,根据全等三角形的性质证明;(3)连接AC,过C作CEAB,交AB的延长线于E,根据相似多边形的性质求出BC,根据勾股定理计算即可【详解】(1)AA=CC,理由如下:连接AC、AC,矩形ABCD矩形ABCD,CAB=CAB,ABAB,点A、A、C、C在同一条直线上,由矩形的性质可知,OA=OC,OA=OC,AA=CC,故答案为AA=CC;(2)(1)中的结论还成立,AA=CC,理由如下:连接AC、AC,则AC、AC都经过点O,由旋转的性质可知,AOA=COC,四边形ABC
25、D和四边形ABCD都是矩形,OA=OC,OA=OC,在AOA和COC中,AOACOC,AA=CC;(3)连接AC,过C作CEAB,交AB的延长线于E,矩形ABCD矩形ABCD,即,解得,BC=4,EBC=BCC=E=90,四边形BECC为矩形,EC=BC=4,在RtABC中,AC=10,在RtAEC中,AE=2,AA+BE=23,又AA=CC=BE,AA=【点睛】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键20、(1)y;(2)yx+1【解析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作ADBC于D,则D(2,b),即可
26、利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案【详解】(1)由题意得:kxy236,反比例函数的解析式为y;(2)设B点坐标为(a,b),如图,作ADBC于D,则D(2,b),反比例函数y的图象经过点B(a,b),b,AD3,SABCBCADa(3)6,解得a6,b1,B(6,1),设AB的解析式为ykx+b,将A(2,3),B(6,1)代入函数解析式,得,解得:,所以直线AB的解析式为yx+1【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键2
27、1、(1)y=;(2);(3)x1【解析】(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据OEF的面积=S矩形BCDOSODESOBFSCEF进行计算;(3)观察函数图象得到当x1时,一次函数图象都在反比例函数图象上方,即k2x+b【详解】(1)四边形DOBC是矩形,且点C的坐标为(1,4),OB=1,OD=4,点A为线段OC的中点,A点坐标为(3,2),k1=32=1,反比例函数解析式为y=;(2)把x=1代入y=
28、得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),OEF的面积=S矩形BCDOSODESOBFSCEF=41411(1)(41)=;(3)由图象得:不等式不等式k2x+b的解集为x1【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可22、(1)一天可获利润2000元;(2)每件商品应降价2元或8元;当2x8时,商店所获利润不少于2160元【解析】:(1)原来一天可获利:20100=2000元;(2)y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-20
29、0)=2160,解得:x1=2,x2=8,每件商品应降价2或8元;观察图像可得23、(1)7x1+4x+4;(1)55.【解析】(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1x1)即可求得纸片上的代数式;(1)先解方程1xx9,再代入纸片的代数式即可求解.【详解】解:(1)纸片上的代数式为:(4x1+5x+6)+(3x1x1)4x1+5x+6+3x1-x-17x1+4x+4(1)解方程:1xx9,解得x3代入纸片上的代数式得7x1+4x+47(-3)+4(-3)+463-11+455即纸片上代数式的值为55.【点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题
30、的过程中要牢记并灵活运用整式加减混合运算的法则特别是对于含括号的运算,在去括号时,一定要注意符号的变化24、(1)两次下降的百分率为10%; (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元【解析】(1)设每次降价的百分率为 x,(1x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x40(1x)232.4x10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得 解得:1.1,2.1,有利于减少库存,y2.1答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可