《信阳市重点中学2023届中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《信阳市重点中学2023届中考联考数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是()ABCD2如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则BOC的周长为()A9B10C12D143从甲、乙、丙、丁四
2、人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲21.5,S乙22.6,S丙23.5,S丁23.68,你认为派谁去参赛更合适()A甲B乙C丙D丁4下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是( )Ay=3x2+2By=3(x1)2Cy=3(x1)2+2Dy=2x25如图所示图形中,不是正方体的展开图的是()ABCD6在实数3.5、0、4中,最小的数是()A3.5BC0D47某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A50和48B50和47C48和48D48和438如图,在矩形ABC
3、D中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD9下列说法正确的是( )A“明天降雨的概率是60%”表示明天有60%的时间都在降雨B“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近10(2017鄂州)如图四边形ABCD中,ADBC,BCD=90,AB=BC+AD,DAC=45,E为CD上一点,且BAE=45若CD=4,则ABE的面积为( )A B C
4、 D11郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米)2.102.202.252.302.352.402.452.50人数23245211则下列叙述正确的是()A这些运动员成绩的众数是 5B这些运动员成绩的中位数是 2.30C这些运动员的平均成绩是 2.25D这些运动员成绩的方差是 0.072512定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y
5、=的一个“派生函数”现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A命题(1)与命题(2)都是真命题B命题(1)与命题(2)都是假命题C命题(1)是假命题,命题(2)是真命题D命题(1)是真命题,命题(2)是假命题二、填空题:(本大题共6个小题,每小题4分,共24分)13已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为_14如图,直线mn,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若1=30,则2=_15分解因式:_16
6、已知y与x的函数满足下列条件:它的图象经过(1,1)点;当时,y随x的增大而减小写出一个符合条件的函数:_17如图,在ABC中,ACB=90,A=45,CDAB于点D,点P在线段DB上,若AP2-PB2=48,则PCD的面积为_.18若有意义,则x 的取值范围是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.20(6分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD
7、的对角线AC,BD相交于点O,AC=4,BD=1点P是AC上的一个动点,过点P作MNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上)设AP的长为x(0x4),AMN的面积为y建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y0 0(3)观察所画的图象,写出该函数的两条性质: 21(6分)如图,求证:。22(8分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位
8、学子算得快,多少年华属周瑜?23(8分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标24(10分)计算:_25(10分)如图,在中,,于, .求的长;.求 的长. 26(12分)如
9、图,在RtABC中,ACB=90,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿CAB以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作O(1)当时,求PCQ的面积;(2)设O的面积为s,求s与t的函数关系式;(3)当点Q在AB上运动时,O与RtABC的一边相切,求t的值27(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(6,n),与x轴交于点C(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b的x的取值范围;(3)若
10、点P在x轴上,且SACP=,求点P的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据函数的图象和所给出的图形分别对每一项进行判断即可.【详解】由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.故选: D.【点睛】本题主要考查函数模型及其应用.2、A【解析】利用平行四边形的性质即可解决问题.【详解】四边形ABCD是平行四边形,AD=BC=3,OD=OB=2,OA=OC=4
11、,OBC的周长=3+2+4=9,故选:A【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.3、A【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.4、D【解析】分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;B、y=3x2的图象向右平移1个单位得到y=3(x1)2,故本选项错误;
12、C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x1)2+2,故本选项错误;D、y=3x2的图象平移不能得到y=2x2,故本选项正确故选D5、C【解析】由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.【详解】解:A、B、D都是正方体的展开图,故选项错误;C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图故选C【点睛】此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题6、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数3.5、0、4中,最小
13、的数是4,故选D【点睛】掌握实数比较大小的法则7、A【解析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.8、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=B
14、EA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积9、D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖故C不符合题意;D. “抛一枚正方体骰子,朝上的点
15、数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键10、D【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FHAB于H,EKAB于K作BTAD于TBCAG,BCF=FDG,BFC=DFG,FC=DF,BCFGDF,BC=DG,BF=FG,AB=BC+AD,AG=AD+DG=AD+BC,AB=AG,BF=FG,BFBG,ABF=G=CBF,FHBA,FCBC,FH=FC,易证FBCFBH,FAHFAD,BC=BH,AD=AB,由题意AD=DC=4,设
16、BC=TD=BH=x,在RtABT中,AB2=BT2+AT2,(x+4)2=42+(4x)2,x=1,BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,42+z2=y2,(5y)2+y2=12+(4z)2,由可得y=,SABE=5=,故选D点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题11、B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即
17、可得出答案【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量12、C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断(2)根据“
18、派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论(1)P(a,b)在y=上, a和b同号,所以对称轴在y轴左侧,存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题(2)函数y=的所有“派生函数”为y=ax2+bx, x=0时,y=0,所有“派生函数”为y=ax2+bx经过原点,函数y=的所有“派生函数”,的图象都进过同一点,是真命题考点:(1)命题与定理;(2)新定义型二、填空题:(本大题共6个小题,每小题4分,共24分)13、y=【解析】解:设这个反比例函数的表达式为y=P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,x1y1=x2y
19、2=k,=,=,=,=,k=2(x2x1)x2=x1+2,x2x1=2,k=22=4,这个反比例函数的解析式为:y=故答案为y=点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数同时考查了式子的变形14、75【解析】试题解析:直线l1l2, 故答案为15、【解析】先提取公因式,再利用平方差公式分解因式即可.【详解】故答案为:.【点睛】本题考查了分解因式,熟练掌握因式法、公式法、十字相乘法、分组分解法的区别,根据题目选择合适的方法是解题的关键.16、y=-x+2(答案不唯一)【解析】图象经过(1,1)点;当x1时y随x的增大而减小,这个函数解析式为
20、y=-x+2,故答案为y=-x+2(答案不唯一)17、6【解析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48,利用平方差公式及线段的和差公式将其变形可得CDPD=12,利用PCD的面积 =CDPD可得.【详解】解: 在ABC中,ACB=90,A=45,B=45,AC=BC,CDAB,AD=BD=CD=AB,AP2-PB2=48,(AP+PB)(AP-PB)=48,AB(AD+PD-BD+DP)=48,AB2PD=48,2CD2PD=48,CDPD=12, PCD的面积=CDPD=6
21、.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一18、x【解析】略三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、小王在这两年春节收到的年平均增长率是【解析】增长后的量=增长前的量(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可【详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【
22、点睛】本题考查了一元二次方程的应用对于增长率问题,增长前的量(1+年平均增长率)年数=增长后的量20、 (1) y=;(1)见解析;(3)见解析【解析】(1)根据线段相似的关系得出函数关系式(1)代入中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x当0x1时MNBDAPMAODMP=AC垂直平分MNPN=PM=xMN=xy=APMN=当1x4时,P在线段OC上,CP=4xCPMCODPM=MN=1PM=4xy=y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0x1时,y随x的增大而增大1、当1x4时,y随x的增
23、大而减小【点睛】本题考查函数,解题的关键是数形结合思想.21、见解析【解析】据1=2可得BAC=EAD,再加上条件AB=AE,C=D可证明ABCAED【详解】证明:1=2,1+EAC=2+EAC,即BAC=EAD在ABC和AED中,ABCAED(AAS)【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角22、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1根据题意建立方程求出其值
24、就可以求出其结论【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+xx2,解得:x15,x26当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键23、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHO
25、A于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA
26、于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=
27、BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP
28、=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,O
29、D=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=,DE=BE,t=t2)=2t4 解得:t=4,OP=4,PE=64=2,点E的坐标为(4,2) 综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性24、1【解析】首先计算负整数指数幂和开平方,再计算减法即可【详解】解:原式931【点睛】此题主要考查了实数
30、运算,关键是掌握负整数指数幂:为正整数)25、(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).在中,.,(2).,即,201525CD.26、(1);(2);(3)t的值为或1或【解析】(1)先根据t的值计算CQ和CP的长,由图形可知PCQ是直角三角形,根据三角形面积公式可得结论;(2)分两种情况:当Q在边AC上运动时,当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;(3)分别当O与BC相切时、当O与AB相切时,当O与AC相切时三种情况分类讨论即可确定答案【详解】(1)当t=
31、时,CQ=4t=4=2,即此时Q与A重合,CP=t=,ACB=90,SPCQ=CQPC=2=;(2)分两种情况:当Q在边AC上运动时,0t2,如图1,由题意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,S=;当Q在边AB上运动时,2t4如图2,设O与AB的另一个交点为D,连接PD,CP=t,AC+AQ=4t,PB=BCPC=2t,BQ=2+44t=64t,PQ为O的直径,PDQ=90,RtACB中,AC=2cm,AB=4cm,B=30,RtPDB中,PD=PB=,BD=,QD=BQBD=64t=3,PQ=,S=;(3)分三种情况:当O与AC相切
32、时,如图3,设切点为E,连接OE,过Q作QFAC于F,OEAC,AQ=4t2,RtAFQ中,AQF=30,AF=2t1,FQ=(2t1),FQOEPC,OQ=OP,EF=CE,FQ+PC=2OE=PQ,(2t1)+t=,解得:t=或(舍);当O与BC相切时,如图4,此时PQBC,BQ=64t,PB=2t,cos30=,t=1;当O与BA相切时,如图5,此时PQBA,BQ=64t,PB=2t,cos30=,t=,综上所述,t的值为或1或【点睛】本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合
33、的思想27、(1);(1)-6x0或1x;(3)(-1,0)或(-6,0)【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SACP=SBOC,即可得出|x+4|=1,解之即可得出结论【详解】(1)点A(m,3),B(-6,n)在双曲线y=上,m=1,n=-1,A(1,3),B(-6,-1)将(1,3),B(-6,-1)带入y=kx+b, 得:,解得,直线的解析式为y=x+1(1)由函数图像可知,当kx+b时,-6x0或1x;(3)当y=x+1=0时,x=-4,点C(-4,0)设点P的坐标为(x,0),如图,SACP=SBOC,A(1,3),B(-6,-1),3|x-(-4)|=|0-(-4)|-1|,即|x+4|=1,解得:x1=-6,x1=-1点P的坐标为(-6,0)或(-1,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及SACP=SBOC,得出|x+4|=1