内蒙古巴彦淖尔市临河区第三中学2022-2023学年高考适应性考试数学试卷含解析.doc

上传人:茅**** 文档编号:87846156 上传时间:2023-04-18 格式:DOC 页数:21 大小:2.19MB
返回 下载 相关 举报
内蒙古巴彦淖尔市临河区第三中学2022-2023学年高考适应性考试数学试卷含解析.doc_第1页
第1页 / 共21页
内蒙古巴彦淖尔市临河区第三中学2022-2023学年高考适应性考试数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《内蒙古巴彦淖尔市临河区第三中学2022-2023学年高考适应性考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古巴彦淖尔市临河区第三中学2022-2023学年高考适应性考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则下列关系正确的是( )ABCD2已知,若则实数的取值范围是( )ABCD3已知为抛物线的焦点,点在抛物线上,且,过

2、点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题:在抛物线上满足条件的点仅有一个;若是抛物线准线上一动点,则的最小值为;无论过点的直线在什么位置,总有;若点在抛物线准线上的射影为,则三点在同一条直线上.其中所有正确命题的个数为( )A1B2C3D44若,则( )ABCD5已知等差数列满足,公差,且成等比数列,则A1B2C3D46已知集合,则中元素的个数为( )A3B2C1D07已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为ABCD8已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,则

3、的离心率为( )A2BCD9等比数列若则( )A6B6C-6D10已知椭圆内有一条以点为中点的弦,则直线的方程为( )ABCD11设,满足约束条件,若的最大值为,则的展开式中项的系数为( )A60B80C90D120122019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A96B84C120D360二、填空题:本题共4小题,每小题5分,共20分。13函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为_.14设点P在函数的图象上,点Q在函数的图象上,则线段PQ长度的最小值为_1

4、5如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为_16从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为_.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线和圆,倾斜角为45的直线过抛物线的焦点,且与圆相切(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设求证点在定直线上,并求该定直线的方程18(12分)已知函数的定义域为.(1)求实数的取值范围;(2)

5、设实数为的最小值,若实数,满足,求的最小值.19(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且(1)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值20(12分)在四边形中,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.21(12分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.22(10分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,记的最大值与最小值分别为M,m,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给

6、出的四个选项中,只有一项是符合题目要求的。1、A【解析】首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,所以,综上可得.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题2、C【解析】根据,得到有解,则,得,得到,再根据,有,即,可化为,根据,则的解集包含求解,【详解】因为,所以有解,即有解,所以,得,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,3、C【解析】:由抛物线的定义可知,从而可求 的

7、坐标;:做关于准线的对称点为,通过分析可知当三点共线时取最小值,由两点间的距离公式,可求此时最小值;:设出直线方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求,从而可判断出的关系;:计算直线 的斜率之差,可得两直线斜率相等,进而可判断三点在同一条直线上.【详解】解:对于,设,由抛物线的方程得,则, 故,所以或,所以满足条件的点有二个,故不正确; 对于,不妨设,则关于准线的对称点为, 故,当且仅当三点共线时等号成立,故正确; 对于,由题意知, ,且的斜率不为0,则设方程为:,设与抛物线的交点坐标为,联立直线与抛物线的方程为, ,整理得,则,所以, 则.故的倾斜角互补,所以,

8、故正确.对于,由题意知 ,由知,则 ,由,知,即三点在同一条直线上,故正确.故选:C.【点睛】本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值.4、D【解析】直接利用二倍角余弦公式与弦化切即可得到结果【详解】,故选D【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型5、D【解析】先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.

9、属于简单题,化归基本量,寻求等量关系是求解的关键.6、C【解析】集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.7、B【解析】双曲线的渐近线方程为,由题可知设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B8、D【解析】作出图象,取AB中点E,连接EF2,设F1Ax,根据双曲线定义可得x2a,再由勾股定理可得到c27a2,

10、进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1EF2,F1AAEEB,设F1Ax,则由双曲线定义可得AF22a+x,BF1BF23x2ax2a,所以x2a,则EF22a,由勾股定理可得(4a)2+(2a)2(2c)2,所以c27a2,则e故选:D【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题对于圆锥曲线中求离心率的问题,关键是列出含有 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.9、B【解析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,所以,而由等比数列性

11、质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.10、C【解析】设,则,相减得到,解得答案.【详解】设,设直线斜率为,则,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.11、B【解析】画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.【点睛】本题考查了线性规划求最值,二项式定理,意在考

12、查学生的计算能力和综合应用能力.12、B【解析】2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令,则,恰有四个解.由判断函数增减性,求出最小值,列出相应不等式求解得出的取值范围.【详解】解:令,则,恰有四个解.有两个解,由,可得在上单调递减,在上单调递增,则,可得.设的负根为,由题意知,则,.故答案为:.【点睛】本题考查导数在函数当中的应用,属于难题.14、【解析】由解析式可分析两函数互为反函数,则图象关于对称,则点到的距离的最小值的二倍即

13、为所求,利用导函数即可求得最值.【详解】由题,因为与互为反函数,则图象关于对称,设点为,则到直线的距离为,设,则,令,即,所以当时,即单调递减;当时,即单调递增,所以,则,所以的最小值为,故答案为:【点睛】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.15、,【解析】根据图象得出该函数的最大值和最小值,可得,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【详解】由图象可知,从题图中可以看出,从时是函数的半个周期,则,.又,得,取,所以,故答案为:,【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.16、5040.【解

14、析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)点在定直线上【解析】(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心

15、到直线的距离,即,解得或(舍去)所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为令,即交轴于点坐标为,所以, ,设点坐标为,则,所以点在定直线上【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题18、(1);(2)【解析】(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定

16、义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,由柯西不等式知所以,即的最小值为.当且仅当,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.19、(1)见解析;(2).【解析】(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;2建立空间直角坐标系,利用向量知识求解即可【详解】(1)证明:四边形是菱形, 平面平面,又是的中点,又平面(2)直线与平面所成的角等于直线与平面所成的角平面,直线与平面所成的角为,即因为,则在等腰直角三角形中,所以在中,由得,以为原点,分别以为轴建立

17、空间直角坐标系则所以设平面的一个法向量为,则,可得,取平面的一个法向量为,则,所以二面角的正弦值的大小为(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出)【点睛】本题主要考查了线面垂直的判定以及二面角的求解,属于中档题20、(1)证明见详解;(2)【解析】(1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接、,可得,可求出.在中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出

18、的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.【详解】证明:(1)在中,为正三角形,且在中,为等腰直角三角形,且取的中点,连接,平面平面平面.平面平面(2)以为坐标原点,建立如图所示的空间直角坐标系,则,设.则设平面的一个法向量为.则,令,解得与平面所成角的正弦值为,整理得解得或(含去)又为平面的一个法向量,二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直的判定,向量法解决线面角、二面角的问题,属于中档题.21、(1);(2)4.【解析】(1)利用三角形的面积公式求

19、得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本关系式求得.【详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.22、(1);(2)【解析】(1)求导.根据单调,转化为对恒成立求解(2)由(1)知,是的两个根,不妨设,令. 根据,确定,将转化为. 令,用导数法研究其单调性求最值.【详解】(1)的定义域为,.因为单调,所以对恒成立,所以,恒成立,因为,当且仅当时取等号,所以;(2)由(1)知,是的两个根.从而,不妨设,则. 因为,所以t为关于a的减函数,所以. 令,则. 因为当时,在上为减函数.所以当时,.从而,所以在上为减函数.所以当时,.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁