内蒙古自治区鄂尔多斯市准格尔旗2022-2023学年中考联考数学试题含解析.doc

上传人:茅**** 文档编号:87846135 上传时间:2023-04-18 格式:DOC 页数:21 大小:850.50KB
返回 下载 相关 举报
内蒙古自治区鄂尔多斯市准格尔旗2022-2023学年中考联考数学试题含解析.doc_第1页
第1页 / 共21页
内蒙古自治区鄂尔多斯市准格尔旗2022-2023学年中考联考数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《内蒙古自治区鄂尔多斯市准格尔旗2022-2023学年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古自治区鄂尔多斯市准格尔旗2022-2023学年中考联考数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知二次函数y(xh)2+1(为常数),在自变量x的值满足1x3的情况下,与其对应的函数值y的最大值为5,则h的值为( )A3或1+B3或3+C3+或1D1或1+2如图,平行四边

2、形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BEDF的是()AAECFBBEDFCEBFFDEDBEDBFD3如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解,则t的取值范围是( ) A-5t4B3t4C-5t-542017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A5.46108B5.46109C5.461010D5.4610115不等式组的解集是()A1x4Bx1或x4C1x4D1x46某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频

3、数分布直方图,由图可知,下列结论正确的是( )A最喜欢篮球的人数最多B最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C全班共有50名学生D最喜欢田径的人数占总人数的10 %7下列各数中,比1大1的是()A0 B1 C2 D38下列运算正确的是()A(a1)a1B(2a3)24a6C(ab)2a2b2Da3+a22a59已知一组数据:12,5,9,5,14,下列说法不正确的是( )A平均数是9B中位数是9C众数是5D极差是510如图,是直角三角形,点在反比例函数的图象上若点在反比例函数的图象上,则的值为( )A2B-2C4D-411已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A

4、作AE的垂线交DE于点P,若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是()ABCD12若代数式有意义,则实数x的取值范围是()Ax0Bx0Cx0D任意实数二、填空题:(本大题共6个小题,每小题4分,共24分)13点 C 在射线 AB上,若 AB=3,BC=2,则AC为_14已知直角三角形的两边长分别为3、1则第三边长为_15科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近其中2540000用科学记数法表示为_16如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0

5、,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B(2,0),则点A的对应点A的坐标为_17若一元二次方程x22xm=0无实数根,则一次函数y=(m+1)x+m1的图象不经过第_象限18若n边形的内角和是它的外角和的2倍,则n= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件

6、按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?20(6分)(阅读)如图1,在等腰ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1连接AM (思考)在上述问题中,h1,h1与h的数量关系为: (探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标21(6分)如图,AB是O的直径,点C为O上一点,经过C作CDAB于

7、点D,CF是O的切线,过点A作AECF于E,连接AC(1)求证:AE=AD(2)若AE=3,CD=4,求AB的长22(8分)如图,在ABC中,ABAC4,A36在AC边上确定点D,使得ABD与BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)23(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围24(10分)如

8、图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,)(1)求m、n的值和反比例函数的表达式(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长25(10分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合

9、理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量26(12分)(1)问题发现如图1,在RtABC中,A=90,=1,点P是边BC上一动点(不与点B重合),PAD=90,APD=B,连接 CD(1)求的值;求ACD的度数(2)拓展探究如图 2,在RtABC中,A=90,=k点P是边BC上一动点(不与点B重合),PAD=90,APD=B,连接CD,请判断ACD与B 的数量关系以及PB与CD之间的数量关系,并说明理由(3)解决问题如图 3,在ABC中,B=45,AB=4,BC=12,P 是边BC上一动点(不与点B重合),PAD=BAC,APD=B,连接CD若 PA=5,

10、请直接写出CD的长27(12分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60,沿山坡向上走到P处再测得点C的仰角为45,已知OA100米,山坡坡度(竖直高度与水平宽度的比)i1:2,且O、A、B在同一条直线上求电视塔OC的高度以及此人所在位置点P的铅直高度(测倾器高度忽略不计,结果保留根号形式)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】当xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h1x3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);若1x

11、3h,当x=3时,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍)综上,h的值为1-或3+,故选C点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键2、B【解析】由四边形ABCD是平行四边形,可得AD/BC,AD=BC,然后由AE=CF,EBF=FDE,BED=BFD均可判定四边形BFDE是平行四边形,则可证得BE/DF,利用排除法即可求得答案【详解】四边形ABCD是平行四边形,AD/BC,AD=BC,A、AE=CF,DE=BF,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;B、BE=DF,四边形BF

12、DE是等腰梯形,本选项不一定能判定BE/DF;C、AD/BC,BED+EBF=180,EDF+BFD=180,EBF=FDE,BED=BFD,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;D、AD/BC,BED+EBF=180,EDF+BFD=180,BED=BFD,EBF=FDE,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF故选B【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键3、B【解析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或

13、3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1x3的范围内有公共点可确定t的范围【详解】 抛物线y=-x2+mx的对称轴为直线x=2, , 解之:m=4, y=-x2+4x, 当x=2时,y=-4+8=4, 顶点坐标为(2,4), 关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4, 3t4, 故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质4、C【解析】科学

14、记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:将546亿用科学记数法表示为:5.461010 ,故本题选C.【点睛】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.5、D【解析】试题分析:解不等式可得:x1,解不等式可得:x4,则不等式组的解为1x4,故选D6、C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有

15、12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7、A【解析】用-1加上1,求出比-1大1的是多少即可【详解】-1+1=1,比-1大1的是1故选:A【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”8、B【解析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解【详解】解:A、因为(a1)=a+1,故本选项错误;B、(2a3)2=4a6,正确;C、因为(ab)2=a22ab+b2,

16、故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误故选B【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键9、D【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)5=9,故选项A正确;重新排列为5,5,9,12,14,中位数为9,故选项B正确;5出现了2次,最多,众数是5,故选项C正确;极差为:145=9,故选项D错误故选D10、D【解析】要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.【详解】过点、作轴,轴,分别于、,

17、设点的坐标是,则,因为点在反比例函数的图象上,则,点在反比例函数的图象上,点的坐标是,.故选:.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.11、D【解析】首先利用已知条件根据边角边可以证明APDAEB;由可得BEP=90,故BE不垂直于AE过点B作BFAE延长线于F,由得AEB=135所以EFB=45,所以EFB是等腰Rt,故B到直线AE距离为BF=,故是错误的;利用全等三角形的性质和对顶角相等即可判定说法正确;由APDAEB,可知SAPD+SAPB=SAE

18、B+SAPB,然后利用已知条件计算即可判定;连接BD,根据三角形的面积公式得到SBPD=PDBE=,所以SABD=SAPD+SAPB+SBPD=2+,由此即可判定【详解】由边角边定理易知APDAEB,故正确;由APDAEB得,AEP=APE=45,从而APD=AEB=135,所以BEP=90,过B作BFAE,交AE的延长线于F,则BF的长是点B到直线AE的距离,在AEP中,由勾股定理得PE=,在BEP中,PB= ,PE=,由勾股定理得:BE=,PAE=PEB=EFB=90,AE=AP,AEP=45,BEF=180-45-90=45,EBF=45,EF=BF,在EFB中,由勾股定理得:EF=BF

19、=,故是错误的;因为APDAEB,所以ADP=ABE,而对顶角相等,所以是正确的; 由APDAEB,PD=BE=,可知SAPD+SAPB=SAEB+SAPB=SAEP+SBEP=+,因此是错误的;连接BD,则SBPD=PDBE= ,所以SABD=SAPD+SAPB+SBPD=2+,所以S正方形ABCD=2SABD=4+ 综上可知,正确的有故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题12、C【解析】根据分式和二次根式有意义的条件进行解答【详解】 解:依题意得:x21且x1解得x1故选C【点睛】考

20、查了分式有意义的条件和二次根式有意义的条件解题时,注意分母不等于零且被开方数是非负数二、填空题:(本大题共6个小题,每小题4分,共24分)13、2或2【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,AB=3,BC=2,AC=ABBC=3-2=2;(2)当点C在线段AB的延长线上时,如图,AB=3,BC=2,AC=AB+BC=3+2=2 故答案为2或2点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解14、4或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:长为3的边是直

21、角边,长为3的边是斜边时:第三边的长为:;长为3、3的边都是直角边时:第三边的长为:;第三边的长为:或4考点:3勾股定理;4分类思想的应用15、2.541【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2540000的小数点向左移动6位得到2.54,所以,2540000用科学记数法可表示为:2.541,故答案为2.541【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值16、(3,2)【解析】根据平移的性质即可得到结论【详解】将线段AB沿

22、x轴的正方向平移,若点B的对应点B的坐标为(2,0),-1+3=2,0+3=3A(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形17、一【解析】一元二次方程x2-2x-m=0无实数根,=4+4m0,解得m-1,m+10,m-10,一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限故答案是:一18、6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2), 外角和=360所以,由题意可得180(n-2)=2360解得:n=6三、解答题:(本大题共9个小题,共

23、78分,解答应写出文字说明、证明过程或演算步骤19、(1)120件;(2)150元【解析】试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.由题意可得:,解得,经检验是原方程的根.(2)设每件衬衫的标价至少是元.由(1)得第一批的进价为:(元/件),第二批的进价为:(元)由题意可得:解得:,所以,即每件衬衫的标价至少是150元.考点:1、分式

24、方程的应用 2、一元一次不等式的应用.20、【思考】h1+h1=h;【探究】h1h1=h理由见解析;【应用】所求点M的坐标为(,1)或(,4)【解析】思考:根据等腰三角形的性质,把代数式化简可得.探究:当点M在BC延长线上时,连接,可得,化简可得.应用:先证明,ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My1=OB,解得的纵坐标,再分别代入的解析式即可求解.【详解】思考即h1+h1=h探究h1h1=h 理由连接, h1h1=h 应用在中,令x=0得y=3;令y=0得x=4,则:A(4,0),B(0,3) 同理求得

25、C(1,0),又因为AC=5,所以AB=AC,即ABC为等腰三角形当点M在BC边上时,由h1+h1=h得:1+My=OB,My=31=1,把它代入y=3x+3中求得:,; 当点M在CB延长线上时,由h1h1=h得:My1=OB,My=3+1=4,把它代入y=3x+3中求得:,综上,所求点M的坐标为或【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.21、(1)证明见解析(2) 【解析】(1)连接OC,根据垂直定义和切线性质定理证出CAECAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理

26、得:AC=5,由cosEAC=,cosCAB=,EAC=CAB,得=.【详解】(1)证明:连接OC,如图所示,CDAB,AECF,AEC=ADC=90,CF是圆O的切线,COCF,即ECO=90,AEOC,EAC=ACO,OA=OC,CAO=ACO,EAC=CAO,在CAE和CAD中,CAECAD(AAS),AE=AD;(2)解:连接CB,如图所示,CAECAD,AE=3,AD=AE=3,在RtACD中,AD=3,CD=4,根据勾股定理得:AC=5,在RtAEC中,cosEAC=,AB为直径,ACB=90,cosCAB=,EAC=CAB,=,即AB=【点睛】本题考核知识点:切线性质,锐角三角函

27、数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.22、【解析】作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长【详解】如图所示,作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,ACBD36,CC,ABCBDC,设BCBDADx,则CD4x,BC2ACCD,x24(4x),解得x1,x2(舍去),BC的长【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作23、(1)y=-2x+

28、31,(2)20x1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得: 解得: y与x的函数解析式为y=-2x+31,(2) 试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,自变量x的取值范围是20x124、(1)y=;(2).【解析】(1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2

29、)设OG=x,则GD=OG=x,CG=2x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FHCB于H,易证得GCDDHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得【详解】(1)D(m,2),E(n,),AB=BD=2,m=n2,解得,D(1,2),k=2,反比例函数的表达式为y=;(2)设OG=x,则GD=OG=x,CG=2x,在RtCDG中,x2=(2x)2+12,解得x=,过F点作FHCB于H,GDF=90,CDG+FDH=90,CDG+CGD=90,CGD=FDH,GCD=FHD=90,GCDDHF,即,FD=,FG=【点睛】本题考查了反比例函数与几何综合

30、题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.25、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升【解析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)7=800(升),将这7天的用水量从

31、小到大重新排列为:780、785、790、800、805、815、825,用水量的中位数为800升;(2)100%=12.5%答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水10030=3000升26、(1)1,45;(2)ACD=B, =k;(3).【解析】(1)根据已知条件推出ABPACD,根据全等三角形的性质得到PB=CD,ACD=B=45,于是得到 根据已知条件得到ABCAPD,由相似三角形的性质得到,得到 ABPCAD,根据相似三角形的性质得到结论;

32、过A作AHBC 于 H,得到ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出ABPCAD,根据相似三角形的性质即可得到结论【详解】(1)A=90,AB=AC,B=45,PAD=90,APD=B=45,AP=AD,BAP=CAD,在ABP 与ACD 中,AB=AC, BAP=CAD,AP=AD,ABPACD,PB=CD,ACD=B=45,=1,(2)BAC=PAD=90,B=APD,ABCAPD,BAP+PAC=PAC+CAD=90,BAP=CAD,ABPCAD,ACD=B,(3)过 A 作 AHBC 于 H,B=45,ABH 是等腰直角三角形,

33、 AH=BH=4,BC=12,CH=8,PH=3,PB=1,BAC=PAD=,B=APD,ABCAPD,,BAP+PAC=PAC+CAD,BAP=CAD,ABPCAD,即 过 A 作 AHBC 于 H,B=45,ABH 是等腰直角三角形, AH=BH=4,BC=12,CH=8,PH=3,PB=7,BAC=PAD=,B=APD,ABCAPD,BAP+PAC=PAC+CAD,BAP=CAD,ABPCAD,即 【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键27、电视塔高为米,点的铅直高度为(米)【解析】过点P作PFOC,垂足为F,在RtOAC中利用三角函数求出OC=100,根据山坡坡度1:2表示出PBx, AB2x, 在RtPCF中利用三角函数即可求解.【详解】过点P作PFOC,垂足为F在RtOAC中,由OAC60,OA100,得OCOAtanOAC100(米),过点P作PBOA,垂足为B由i1:2,设PBx,则AB2xPFOB100+2x,CF100x在RtPCF中,由CPF45,PFCF,即100+2x100x,x ,即PB米【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁