《内蒙古呼和浩特市重点中学2023年高三下学期联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古呼和浩特市重点中学2023年高三下学期联考数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知集合,则中元素的个数为( )A3B2C1D02设,其中a,b是实数,则( )A1B2CD3 “幻方”最早记载于我国公元前500年的春秋时期大戴礼中“阶幻方”是由前个正整数组成的个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示)则“5阶幻方”的幻和为( )A75B65C55D454函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 5如图,在中,是上一点,若,则实数的值为( )ABCD6已知正四面体的内切球体积为v,外接球的体积为V,则( )A4B8C9D277如图,点E是正方体ABCD-A1B1C1D
3、1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )A在点F的运动过程中,存在EF/BC1B在点M的运动过程中,不存在B1MAEC四面体EMAC的体积为定值D四面体FA1C1B的体积不为定值8半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )ABCD9中国铁路总公司相关负责人表示,到2018年
4、底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B从2014年到2018年这5年,高铁运营里程与年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列10已知、,则下列是等式成立的必要不充分条件的是( )ABCD11复数的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限12已知a,b是两条
5、不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13设、为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:若mn,则m;若m,n,m,n,则;若,m,n,则mn;若,m,n,mn,则n;其中正确命题的序号为_14设等比数列的前项和为,若,则_15已知定义在的函数满足,且当时,则的解集为_.16已知为偶函数,当时,则曲线在点处的切线方程是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对
6、应的变换作用下得到另一曲线,求曲线的方程.18(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)设曲线与曲线相交于,两点,求的值.19(12分)已知函数,的最大值为求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由20(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)
7、写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,求的值.21(12分)已知函数,其中为自然对数的底数,(1)若曲线在点处的切线与直线平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由22(10分)在平面直角坐标系中,直线与抛物线:交于,两点,且当时,.(1)求的值;(2)设线段的中点为,抛物线在点处的切线与的准线交于点,证明:轴.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个
8、数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.2、D【解析】根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.3、B【解析】计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.4、D【解析】由题意结合函数的图象,求出周期,根据周期
9、公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果5、C【解析】由题意,可根据向量运算法则得到(1m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,又,所以,(1m),又t,所以,解得m,t,故选C【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.6、D【解析】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,
10、再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,在中,由勾股定理得:,解得, 故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.7、C【解析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,/而与平面相交,故可知与平面相交,所以不存在EF/BC1B错误,如图,作由又平面,所
11、以平面又平面,所以由/,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由/,平面,平面所以/平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由/,平面,平面所以/平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.8、D【解析】根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求
12、出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.9、D【解析】由折线图逐项分析即可求解【详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题10、D【解析】构造函数,利用导数分析出这两个函数在区间上均为减函数,由得出,分、三种情况
13、讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.【详解】构造函数,则,所以,函数、在区间上均为减函数,当时,则,;当时,.由得.若,则,即,不合乎题意;若,则,则,此时,由于函数在区间上单调递增,函数在区间上单调递增,则,;若,则,则,此时,由于函数在区间上单调递减,函数在区间上单调递增,则,.综上所述,.故选:D.【点睛】本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.11、A【解析】试题分析:由题意可得:. 共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系12、D【
14、解析】根据面面平行的判定及性质求解即可【详解】解:a,b,a,b,由ab,不一定有,与可能相交;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的既不充分也不必要条件故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于,当mn时,由直线与平面平行的定义和判定定理,不能得出m,错误;对于,当m,n,且m,n时,由两平面平行的判定定理,不能得出,错误;对于,当,且m
15、,n时,由两平面平行的性质定理,不能得出mn,错误;对于,当,且m,n,mn时,由两平面垂直的性质定理,能够得出n,正确;综上知,正确命题的序号是故答案为:【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.14、【解析】由题意,设等比数列的公比为,根据已知条件,列出方程组,求得的值,利用求和公式,即可求解【详解】由题意,设等比数列的公比为,因为,即,解得,所以.【点睛】本题主要考查了等比数列的通项公式,及前n项和公式的应用,其中解答中根据等比数列的通项公式,正确求解首项和公比是解答本题的关键,着重考查了推理与计算能力,属于基础题15、【解析】由已知得出函
16、数是偶函数,再得出函数的单调性,得出所解不等式的等价的不等式,可得解集.【详解】因为定义在的函数满足,所以函数是偶函数,又当时,得时,所以函数在上单调递减,所以函数在上单调递减,函数在上单调递增,所以不等式等价于,即或,解得或,所以不等式的解集为:.故答案为:.【点睛】本题考查抽象函数的不等式的求解,关键得出函数的奇偶性,单调性,属于中档题.16、【解析】试题分析:当时,则又因为为偶函数,所以,所以,则,所以切线方程为,即【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函
17、数,则函数的解析式为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】根据,可解得,设为曲线任一点,在矩阵对应的变换作用下得到点,则点在曲线上,根据变换的定义写出相应的矩阵等式,再用表示出,代入曲线的方程中,即得.【详解】,即.,解得,.设为曲线任一点,则,又设在矩阵A变换作用得到点,则,即,所以即代入,得,所以曲线的方程为.【点睛】本题考查逆矩阵,矩阵与变换等,是基础题.18、(1);(2)【解析】(1)消去参数方程中的参数,求得的普通方程,利用极坐标和直角坐标的转化公式,求得的直角坐标方程.(2)求得曲线的标准参数方程,代入的直角坐标方程,写出韦达定理,根据直线参
18、数中参数的几何意义,求得的值.【详解】(1)由的参数方程(为参数),消去参数可得,由曲线的极坐标方程为,得,所以的直角坐方程为,即.(2)因为在曲线上,故可设曲线的参数方程为(为参数),代入化简可得.设,对应的参数分别为,则,所以.【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用利用和直线参数方程中参数的几何意义进行计算,属于中档题.19、 (1) ;(2) 时,在单调增;时, 在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时, 取得极大值,也是最大值,由,可得结果;(2)求出,分三
19、种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1) 由题意得,令,解得,当时, ,函数单调递增;当时, ,函数单调递减.所以当时, 取得极大值,也是最大值,所以,解得. (2)的定义域为. 即,则,故在单调增若,而,故,则当时,; 当及时,故在单调递减,在单调递增若,即,同理在单调递减,在单调递增(3)由(1)知, 所以,令,则对恒成立,所以在区间内单调递增, 所以恒成立,所以函数在区间内单调递增. 假设存在区间,使得函数
20、在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根, 即方程在区间内是否存在两个不相等的实根,令, ,则,设, ,则对恒成立,所以函数在区间内单调递增, 故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1) 确定函数的定义域;(2) 求导数 ;(3) 解方程 求出函数定义域内的所有根;(4) 列表检查 在 的根 左右两侧值的符号,如果左正右负(左增右减),那么 在 处取极大值,如果左负右正(左减
21、右增),那么 在 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.20、(1),;(2)2.【解析】(1)由得,求出曲线的直角坐标方程.由直线的参数方程消去参数,即求直线的普通方程;(2)将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,韦达定理得,点在直线上,则,即可求出的值.【详解】(1)由可得,即,即,曲线的直角坐标方程为,由直线的参数方程(t为参数),消去得,即直线的普通方程为.()点的直角坐标为,则点在直线上.将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,整理得,直线与曲线交
22、于两点,即.设点所对应的参数分别为,由韦达定理可得,.点在直线上,.【点睛】本题考查参数方程、极坐标方程和普通方程的互化及应用,属于中档题.21、(1) (2)没有,理由见解析【解析】(1)求导,研究函数在x=0处的导数,等于切线斜率,即得解;(2)对f(x)求导,构造,可证得,得到,即得解【详解】(1)由题意得,曲线在点处的切线与直线平行,切线的斜率为,解得(2)当时,设,则,则函数在区间上单调递减,在区间上单调递增,又函数,故恒成立,函数在定义域内单调递增,函数不存在极值点【点睛】本题考查了导数在切线问题和函数极值问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.22、(1)1;(2)见解析【解析】(1)设,联立直线和抛物线方程,得,写出韦达定理,根据弦长公式,即可求出;(2)由,得,根据导数的几何意义,求出抛物线在点点处切线方程,进而求出,即可证出轴.【详解】解:(1)设,将直线代入中整理得:,解得:.(2)同(1)假设,由,得,从而抛物线在点点处的切线方程为,即,令,得,由(1)知,从而,这表明轴.【点睛】本题考查直线与抛物线的位置关系,涉及联立方程组、韦达定理、弦长公式以及利用导数求切线方程,考查转化思想和计算能力.