《2023届黑龙江省海伦市达标名校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省海伦市达标名校中考二模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交ABC的平分线于点P,则点P到边AB所在直线的距离为( )ABCD12如图,正方形ABCD的边长为2,其面积标记为S1
2、,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S9的值为( )A()6B()7C()6D()73如图,ABCD,1=45,3=80,则2的度数为()A30B35C40D454下列长度的三条线段能组成三角形的是A2,3,5B7,4,2C3,4,8D3,3,45如图,直线 AB 与 MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )A4 对 B5 对 C6 对 D7 对6下列解方程去分母正确的是( )A由,得2x133xB由,得2x2x4C由,得2y-15=3yD由,得3(y+1)2y+67观察下列
3、图形,则第n个图形中三角形的个数是()A2n+2B4n+4C4n4D4n8下列调查中,最适合采用全面调查(普查)方式的是( )A对重庆市初中学生每天阅读时间的调查B对端午节期间市场上粽子质量情况的调查C对某批次手机的防水功能的调查D对某校九年级3班学生肺活量情况的调查9式子有意义的x的取值范围是( )A且x1Bx1CD且x110我国古代数学名著孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11为庆祝“
4、六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_12如图,在ABC中,ACB90,ACBC3,将ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE2,则sinBFD的值为_13计算:a6a3=_14因式分解:3a33a=_15如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点若AC=,AEO=120,则FC的长度为_16在ABC中,A:B:C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_cm三、解答题(共8题,共72分)17(8分)某学校为了解学生的课余活动情况,抽样调查了部
5、分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了 学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人? 18(8分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3
6、名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率19(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x0)的图象交于A(2,1),B(,n)两点,直线y=2与y轴交于点C(1)求一次函数与反比例函数的解析式;(2)求ABC的面积.20(8分)先化简,再求值:(x+2y)(x2y)+(20xy38x2y2)4xy,其中x2018,y121(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数
7、字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率22(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数(k0),它的图象的伴侣正方形为ABCD,点D(2,m)(m2)在反比例函数图象上,求m的值及反比
8、例函数解析式;(3)若某函数是二次函数y=ax2+c(a0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4)写出伴侣正方形在抛物线上的另一个顶点坐标_,写出符合题意的其中一条抛物线解析式_,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_(本小题只需直接写出答案)23(12分)如图,AB为O的直径,D为O上一点,以AD为斜边作ADC,使C=90,CAD=DAB求证:DC是O的切线;若AB=9,AD=6,求DC的长24已知反比例函数的图象过点A(3,2)(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0m3,过点M作直线MBx轴,交y轴
9、于点B;过点A作直线ACy轴,交x轴于点C,交直线MB于点D当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:ABC为等边三角形,BP平分ABC,PBC=ABC=30,PCBC,PCB=90,在RtPCB中,PC=BCtanPBC=1,点P到边AB所在直线的距离为1,故选D考点:1角平分线的性质;2等边三角形的性质;3含30度角的直角三角形;4勾股定理2、A【解析】试题分析:如图所示正方形ABCD的边长为2,CDE为等腰直角三角形,DE2+CE2=CD2,DE=CE,S2+S2=S1观察发现规律
10、:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,由此可得Sn=()n2当n=9时,S9=()92=()6,故选A考点:勾股定理3、B【解析】分析:根据平行线的性质和三角形的外角性质解答即可详解:如图,ABCD,1=45,4=1=45,3=80,2=3-4=80-45=35,故选B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答4、D【解析】试题解析:A3+2=5,2,3,5不能组成三角形,故A错误;B4+27,7,4,2不能组成三角形,故B错误;C4+38,3,4,8不能组成三角形,故C错误;D3+34,3,3,4能组成三角形,故D正确;故选D5、C【解
11、析】由题意,AQNP,MNBQ,ACMDCN,CDNBDP,BPDBQA,ACMABQ,DCNABQ,ACMDBP,所以图中共有六对相似三角形故选C6、D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可【详解】A由,得:2x633x,此选项错误;B由,得:2x4x4,此选项错误;C由,得:5y153y,此选项错误;D由,得:3( y+1)2y+6,此选项正确故选D【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体
12、加上括号7、D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n故选D考点:规律型:图形的变化类8、D【解析】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情
13、况的调查,人数较少,适合普查,故D正确;故选D9、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且故选A10、C【解析】设大马有x匹,小马有y匹,根据题意可得等量关系:大马数小马数100;大马拉瓦数小马拉瓦数100,根据等量关系列出方程组即可【详解】解:设大马有x匹,小马有y匹,由题意得:,故选C【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组二、填空题(本大题共6个小题,每小题3分,共18分)11、6n+1【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8
14、根火柴棒,第1个图形有14618根火柴棒,第3个图形有10618根火柴棒,第n个图形有6n+1根火柴棒12、【解析】分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,在RtDCE中,由勾股定理求得,所以DB=;在RtABC中,由勾股定理得;在RtDGB中,由锐角三角函数求得,;设AF=DF=x,则FG= ,在RtDFG中,根据勾股定理得方程=,解得,从而求得.的值详解:如图所示,过点D作DGAB于点G.根据折叠性质,可知AEFDEF,AE=DE=2,AF=DF,CE=AC-AE=1,在RtDCE中,由勾股定理得,DB=;在RtABC中,由勾股定理得;在RtD
15、GB中,;设AF=DF=x,得FG=AB-AF-GB=,在RtDFG中,即=,解得,=.故答案为.点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题13、a1【解析】根据同底数幂相除,底数不变指数相减计算即可【详解】a6a1=a61=a1故答案是a1【点睛】同底数幂的除法运算性质14、3a(a+1)(a1)【解析】首先提取公因式3a,进而利用平方差公式分解因式得出答案【详解】解:原式=3a(a21)=3a(a+1)(a1)故答案为3a(a+1)(a1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正
16、确应用公式是解题关键15、1【解析】先根据矩形的性质,推理得到OF=CF,再根据RtBOF求得OF的长,即可得到CF的长【详解】解:EFBD,AEO=120,EDO=30,DEO=60,四边形ABCD是矩形,OBF=OCF=30,BFO=60,FOC=60-30=30,OF=CF,又RtBOF中,BO=BD=AC=,OF=tan30BO=1,CF=1,故答案为:1【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分16、1【解析】根据在ABC中,A:B:C=1:2:3,三角形内角和等于180可得A,B,C的度数,它的最小边的长是2cm,从而可以求得最大边
17、的长【详解】在ABC中,A:B:C=1:2:3, 最小边的长是2cm,a=2.c=2a=1cm.故答案为:1.【点睛】考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.三、解答题(共8题,共72分)17、(1)200名;折线图见解析;(2)1210人.【解析】(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答【详解】(1)调查学生总人数为4020%=200(人),体育人数为:20030%=60(人),阅读人数为:200(60+
18、30+20+40)=200150=50(人)补全折线统计图如下:(2)2200=1210(人)答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念18、(1)150;(2)详见解析;(3).【解析】(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解【详解】解:(1)1510%=150
19、,所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150156030=45,喜欢“立定跳远”的学生所占百分比为120%40%10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同性别学生的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图19、(1)y=2x5,;(2)【解析】试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出
20、B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC面积试题解析:(1)把A(2,1)代入反比例解析式得:1=,即m=2,反比例解析式为,把B(,n)代入反比例解析式得:n=4,即B(,4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=5,则一次函数解析式为y=2x5;(2)如图,SABC=考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用20、 (xy)2;2.【解析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即
21、可【详解】原式= x24y2+4xy(5y2-2xy)4xyx24y2+5y22xyx22xy+y2,(xy)2,当x2028,y2时,原式(20282)2(2)22【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.21、(1)答案见解析;(2)【解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率【详解】解:(1)列
22、表如下:所有等可能的情况有12种; (2)一次函数y=kx+b的图象经过一、二、四象限时,k0,b0,情况有4种,则P= 22、(1);(2);(3)(1,3);(7,3);(4,7);(4,1),对应的抛物线分别为 ; ;,偶数.【解析】(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,(2)作DE、CF分别垂直于x、y轴,可知ADEBAOCBF,列出m的等式解出m,(3)本问的抛物线解析式不止一个,求出其中一个【详解】解:(1)正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形当点A在x轴正半轴、点B在y轴负半轴上时,AO=1,BO=1
23、,正方形ABCD的边长为 ,当点A在x轴负半轴、点B在y轴正半轴上时,设正方形的边长为a,得3a=, ,所以伴侣正方形的边长为或;(2)作DE、CF分别垂直于x、y轴,知ADEBAOCBF,此时,m2,DE=OA=BF=mOB=CF=AE=2mOF=BF+OB=2C点坐标为(2m,2),2m=2(2m)解得m=1,反比例函数的解析式为y= ,(3)根据题意画出图形,如图所示:过C作CFx轴,垂足为F,过D作DECF,垂足为E,CEDDGBAOBAFC,C(3,4),即CF=4,OF=3,EG=3,DE=4,故DG=DEGE=DEOF=43=1,则D坐标为(1,3);设过D与C的抛物线的解析式为
24、:y=ax2+b,把D和C的坐标代入得: ,解得 ,满足题意的抛物线的解析式为y=x2+ ;同理可得D的坐标可以为:(7,3);(4,7);(4,1),;对应的抛物线分别为 ; ;,所求的任何抛物线的伴侣正方形个数为偶数.【点睛】本题考查了二次函数的综合题.灵活运用相关知识是解题关键.23、(1)见解析;(2)【解析】分析:(1)如下图,连接OD,由OA=OD可得DAO=ADO,结合CAD=DAB,可得CAD=ADO,从而可得ODAC,由此可得C+CDO=180,结合C=90可得CDO=90即可证得CD是O的切线;(2)如下图,连接BD,由AB是O的直径可得ADB=90=C,结合CAD=DAB
25、可得ACDADB,由此可得,在RtABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.详解:(1)如下图,连接ODOA=OD,DAB=ODA,CAD=DAB,ODA=CADACODC+ODC=180C=90ODC=90ODCD,CD是O的切线(2)如下图,连接BD,AB是O的直径,ADB=90,AB=9,AD=6,BD=3,CAD=BAD,C=ADB=90,ACDADB,CD=点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.24、(1);(2)MB=MD【
26、解析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)有SOMB=SOAC=3,可得矩形OBDC的面积为12;即OCOB=12;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.【详解】(1)将A(3,2)代入中,得2,k=6,反比例函数的表达式为(2)BM=DM,理由:SOMB=SOAC=3,S矩形OBDC=S四边形OADM+SOMB+SOAC=3+3+6=12,即OCOB=12,OC=3,OB=4,即n=4, MB=,MD=,MB=MD【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.