《2023届黑龙江省大庆市林甸县重点达标名校中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省大庆市林甸县重点达标名校中考数学全真模拟试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A9分 B8分 C7分 D6分2某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)383940414243数
2、量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A平均数B中位数C众数D方差3等腰三角形的一个外角是100,则它的顶角的度数为()A80B80或50C20D80或204在平面直角坐标系xOy中,若点P(3,4)在O内,则O的半径r的取值范围是( )A0r3Br4C0r5Dr55如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D6下列计算正确的是()Aa3a2aBa2a3a6C(ab)2a2b2D(a2)3a67把抛物线y2x2向上平移1个单位,得
3、到的抛物线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)28关于反比例函数y=,下列说法中错误的是()A它的图象是双曲线B它的图象在第一、三象限Cy的值随x的值增大而减小D若点(a,b)在它的图象上,则点(b,a)也在它的图象上9甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=10下列叙述,错误的是( )A对角线互相垂直且相等的平行四边形是正方形B对角线互相垂直平分的四边形是菱形C对角线互相平分
4、的四边形是平行四边形D对角线相等的四边形是矩形二、填空题(本大题共6个小题,每小题3分,共18分)11在正方形中,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,则和之间的关系是_(用含的代数式表示)12如图,反比例函数(x0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则OEF的面积的值为 13如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周所得圆柱的主视图(正视图)的周长是_14甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_S乙2(填“”“”或“
5、=”)15如图,把RtABC放在直角坐标系内,其中CAB=90,BC=5,点A,B的坐标分别为(1,0),(4,0),将ABC沿x轴向左平移,当点C落在直线y=2x6上时,则点C沿x轴向左平移了_个单位长度16如图,要使ABCACD,需补充的条件是_(只要写出一种)三、解答题(共8题,共72分)17(8分)如图,A=B=30(1)尺规作图:过点C作CDAC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BDAB18(8分)如图,O为直线AB上一点,AOC=50,OD平分AOC,DOE=90写出图中小于平角的角求出BOD的度数小明发现OE平分BOC,
6、请你通过计算说明道理19(8分)已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果这个方程有两个整数根,求出它的根20(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F求证:OEOF21(8分)如图,直线y1=x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点求y与x之间的函数关系式;直接写出当x0时,不等式x+b的解集;若点P在x轴上,连接AP把ABC的面积分成1:3两部分,求此时点P的坐标22(10分)我国古代数学著作增删算法统宗记载“官兵分布”问题:“一千官军一千布,一官
7、四疋无零数,四军才分布一疋,请问官军多少数”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹问官和兵各几人?23(12分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表种产品种产品成本(万元件)25利润(万元件)13(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?24为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费(I)根据题意,填写下表:月用
8、水量(吨/户)41016应收水费(元/户) 40 (II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6777899,故中位数为 :7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到
9、小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数故选:C点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用3、D【解析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答【详解】等腰三角形的一个外角是100,
10、与这个外角相邻的内角为180100=80,当80为底角时,顶角为180-160=20,该等腰三角形的顶角是80或20.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.4、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围【详解】点P的坐标为(3,4),OP1点P(3,4)在O内,OPr,即r1故选D【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系5、D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=A
11、BAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtABE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D6、D【解析】各项计算得到结果,即可作出判断解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a22ab+b2,不符合题意;D、原式=a6,符合题意,故选D7、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几
12、何变换,熟知“上加下减”的原则是解答此题的关键8、C【解析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答【详解】A反比例函数的图像是双曲线,正确;Bk=20,图象位于一、三象限,正确;C在每一象限内,y的值随x的增大而减小,错误;Dab=ba,若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确故选C【点睛】本题主要考查反比例函数的性质注意:反比例函数的增减性只指在同一象限内9、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要
13、考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键10、D【解析】【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键二、填空题(本大题共6个小题,每小题
14、3分,共18分)11、或【解析】当F在边AB上时,如图1作辅助线,先证明,得,根据正切的定义表示即可;当F在BA的延长线上时,如图2,同理可得:,表示AF的长,同理可得结论【详解】解:分两种情况:当F在边AB上时,如图1,过E作,交AB于G,交DC于H,四边形ABCD是正方形,中,即;当F在BA的延长线上时,如图2,同理可得:,中,【点睛】本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论12、【解析】试题分析:如图,连接OBE、F是反比例函数(x0)的图象上的点,EAx轴于A,FCy轴于C,SAOE=SCOF=1
15、=AE=BE,SBOE=SAOE=,SBOC=SAOB=1SBOF=SBOCSCOF=1=F是BC的中点SOEF=S矩形AOCBSAOESCOFSBEF=6=13、1【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长14、【解析】分别根据方差公式计算出甲、乙两人的方差,再比较大小【详解】=8,=(78)2+(98)2+(88)2+(68)2+(108)2=(1+1+0+4+4)=2,=(78)2+(88)2+(98)2+(88)2+(88)2=(1+0+1+0+0)=0.4,故
16、答案为:【点睛】本题考查了方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定15、1【解析】先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【详解】解:在RtABC中,AB=1(1)=3,BC=5,AC=1,点C的坐标为(1,1)当y=2x6=1时,x=5,1(5)=1,点C沿x轴向左平移1个单位长度才能落在直线y=2x6上故答案为1【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股
17、定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.16、ACD=B或ADC=ACB或AD:AC=AC:AB【解析】试题分析:DAC=CAB当ACD=B或ADC=ACB或AD:AC=AC:AB时,ABCACD故答案为ACD=B或ADC=ACB或AD:AC=AC:AB考点:1相似三角形的判定;2开放型三、解答题(共8题,共72分)17、见解析【解析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由ACD=90,根据三角形的内角和和等腰三角形的性质得到DCB=A=30,推出CDBACB,根据相似三角形的性质即可得到结论【详解】(1)如图所示,CD即为
18、所求;(2)CDAC,ACD=90A=B=30,ACB=120DCB=A=30,B=B,CDBACB,BC2=BDAB【点睛】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作18、(1)答案见解析 (2)155 (3)答案见解析【解析】(1)根据角的定义即可解决;(2)根据BOD=DOC+BOC,首先利用角平分线的定义和邻补角的定义求得DOC和BOC即可;(3)根据COE=DOEDOC和BOE=BODDOE分别求得CO
19、E与BOE的度数即可说明【详解】(1)图中小于平角的角AOD,AOC,AOE,DOC,DOE,DOB,COE,COB,EOB(2)因为AOC=50,OD平分AOC,所以DOC=25,BOC=180AOC=18050=130,所以BOD=DOC+BOC=155(3)因为DOE=90,DOC=25,所以COE=DOEDOC=9025=65又因为BOE=BODDOE=15590=65,所以COE=BOE,所以OE平分BOC【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键19、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判
20、别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法20、见解析【解析】由四边形ABCD是平行四边形,根据
21、平行四边形对角线互相平分,即可得OA=OC,易证得AEOCFO,由全等三角形的对应边相等,可得OE=OF【详解】证明:四边形ABCD是平行四边形,OA=OC,ABDC,EAO=FCO,在AEO和CFO中,AEOCFO(ASA),OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.21、(1);(2)x1;(3)P(,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x0时,不等式x+b的解集为x1;(3)分两种情况进行讨论,A
22、P把ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3=,或OP=4=,进而得出点P的坐标详解:(1)把A(1,m)代入y1=x+4,可得m=1+4=3,A(1,3),把A(1,3)代入双曲线y=,可得k=13=3,y与x之间的函数关系式为:y=;(2)A(1,3),当x0时,不等式x+b的解集为:x1;(3)y1=x+4,令y=0,则x=4,点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,b=,y2=x+,令y2=0,则x=3,即C(3,0),BC=7,AP把ABC的面积分成1:3两部分,CP=BC=,或BP=BC=OP=3=,或OP=4=,
23、P(,0)或(,0)点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点22、官有200人,兵有800人【解析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论【详解】解:设官有x人,兵有y人,依题意,得: ,解得: 答:官有200人,兵有800人【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.23、(1)生产产品8件,生产产品2件;(2)有两种方案:方案,种产品2件,则种产品8件;方案
24、,种产品3件,则种产品7件【解析】(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案【详解】解:(1)设生产种产品件,则生产种产品件,依题意得:,解得: ,则,答:生产产品8件,生产产品2件;(2)设生产产品件,则生产产品件,解得:因为为正整数,故或3;答:共有两种方案:方案,种产品2件,则种产品8件;方案,种产品3件,则种产品7件【点睛】此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键24、()16;6
25、6;()当x15时,y=4x;当x15时,y=6x30;()居民甲上月用水量为18吨,居民乙用水12吨【解析】()根据题意计算即可;()根据分段函数解答即可;()根据题意,可以分段利用方程或方程组解决用水量问题【详解】解:()当月用水量为4吨时,应收水费=44=16元;当月用水量为16吨时,应收水费=154+16=66元;故答案为16;66;()当x15时,y=4x;当x15时,y=154+(x15)6=6x30;()设居民甲上月用水量为X吨,居民乙用水(X6)吨由题意:X615且X15时,4(X6)+154+(X15)6=126X=18,居民甲上月用水量为18吨,居民乙用水12吨【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题注意在实际问题中,利用方程或方程组是解决问题的常用方法