《2023届黄冈市启黄中学十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届黄冈市启黄中学十校联考最后数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1边长相等的正三角形和正六边形的面积之比为( )A13B23C16D12计算:的结果是( )ABCD3如图,将ABC 绕点C顺时针旋转,使点B落在AB边上点B处,此时,点A的对应点
2、 A恰好落在 BC 边的延长线上,下列结论错误的是( )ABCB=ACABACB=2BCBCA=BACDBC 平分BBA4根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k0),下列图象能正确反映p与v之间函数关系的是()ABCD5已知是二元一次方程组的解,则的算术平方根为( )A2BC2D46如图,在ABC中,点D是AB边上的一点,若ACD=B,AD=1,AC=2,ADC的面积为1,则BCD的面积为( )A1B2C3D47下列各式计算正确的是( )ABCD8李老师为了了解学生暑期在家的阅读情况
3、,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( )A众数是8B中位数是3C平均数是3D方差是0.349下列命题中真命题是( )A若a2=b2,则a=b B4的平方根是2C两个锐角之和一定是钝角 D相等的两个角是对顶角10如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2)B(3,1)C(2,2)D(4,2)11三个等边三角形的摆放位置如图,若360,则12的
4、度数为( ) A90B120C270D36012多项式ax24ax12a因式分解正确的是( )Aa(x6)(x+2)Ba(x3)(x+4)Ca(x24x12)Da(x+6)(x2)二、填空题:(本大题共6个小题,每小题4分,共24分)13如果等腰三角形的两内角度数相差45,那么它的顶角度数为_14某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.15化简_16在函数y中,自变量x的取值范围是_17如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合若BE=3,则折痕AE的长为_18如图,菱形O
5、ABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长20(6分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否
6、相同 .21(6分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为 人;(2)如图1项目D所在扇形的圆心角等于 ; (3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.22(8分)如图,在矩形ABCD中,AB2,AD=,P是B
7、C边上的一点,且BP=2CP(1)用尺规在图中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图,在(1)的条体下,判断EB是否平分AEC,并说明理由;(3)如图,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,PFB能否由都经过P点的两次变换与PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)23(8分)先化简,再求值:(x2y)2+(x+y)(x4y),其中x5,y24(10分)如图,ABC三个定点坐标分别为A(1,3),B(1,1),C(3,2)请画出ABC关于y轴对称的A1B1C1
8、;以原点O为位似中心,将A1B1C1放大为原来的2倍,得到A2B2C2,请在第三象限内画出A2B2C2,并求出SA1B1C1:SA2B2C2的值25(10分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45改为30. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由(说明:的计算结果精确到0.1米,参考数据:1.41,1.73,2.24,2.45)26(12分)计算: +()2|1|(+1)0.27(12分)如图,AD是O的直
9、径,AB为O的弦,OPAD,OP与AB的延长线交于点P,过B点的切线交OP于点C求证:CBP=ADB若OA=2,AB=1,求线段BP的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a过A作ADBC于D,则BAD=30,AD=ABcos30=1a=a,SABC=BCAD=1aa=a1连接OA、OB,过O作ODABAOB=20,AOD=30,OD=OBcos30=1a=a,SABO=BAOD=1aa=a1,正六边形的面积为:2a1, 边长相等的正三角形和正六边形的面积
10、之比为:a1:2a1=1:2故选C点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键2、B【解析】根据分式的运算法则即可求出答案【详解】解:原式=故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型3、C【解析】根据旋转的性质求解即可【详解】解:根据旋转的性质,A:与均为旋转角,故=,故A正确;B:,又,故B正确;D:,BC平分BBA,故D正确.无法得出C中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件4、C【解析】【分析】根据题意有:pv=k(k为常数,k0),故p与v
11、之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】pv=k(k为常数,k0)p=(p0,v0,k0),故选C【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限5、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根【分析】是二元一次方程组的解,解得即的算术平方根为1故选C6、C【解析】ACD=B,A=A,ACDABC,SABC=4,SBCD= SABC- SACD=4-1=1故选C考点:相似三角形的判定与性质.7、C【解析】解:A2a与2不
12、是同类项,不能合并,故本选项错误;B应为,故本选项错误;C,正确;D应为,故本选项错误故选C【点睛】本题考查幂的乘方与积的乘方;同底数幂的乘法8、B【解析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=,所以此选项不正确;D、S2=(23.35)2+2(2.53.
13、35)2+8(33.35)2+6(3.53.35)2+3(43.35)2=0.2825,所以此选项不正确;故选B【点睛】本题考查方差;加权平均数;中位数;众数9、B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项【详解】A、若a2=b2,则a=b,错误,是假命题;B、4的平方根是2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大10、A【解析】正方形ABCD与正方形BEFG是以原点O为
14、位似中心的位似图形,且相似比为,=,BG=6,AD=BC=2,ADBG,OADOBG,=,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选A11、B【解析】先根据图中是三个等边三角形可知三角形各内角等于60,用1,2,3表示出ABC各角的度数,再根据三角形内角和定理即可得出结论【详解】图中是三个等边三角形,3=60,ABC=180-60-60=60,ACB=180-60-2=120-2,BAC=180-60-1=120-1,ABC+ACB+BAC=180,60+(120-2)+(120-1)=180,1+2=120故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于6
15、0是解答此题的关键12、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可解:ax24ax12a=a(x24x12)=a(x6)(x+2)故答案为a(x6)(x+2)点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、90或30【解析】分两种情况讨论求解:顶角比底角大45;顶角比底角小45【详解】设顶角为x度,则当底角为x45时,2(x45)+x=180,解得x=90,当底角为x+45时,2(x+45)+x=180,解得x=30,顶角度数为90或30故答案为:90或30【点
16、睛】本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45或顶角比底角小45两种情况进行计算.14、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础15、【解析
17、】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解【详解】解:法一、=(- ) = = 2-m故答案为:2-m法二、原式= =1-m+1=2-m故答案为:2-m【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律16、x4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义由题意得,考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.17、6【解析】试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,AE=CE,设AB=AO=OC=x,则有AC=2x,A
18、CB=30,在RtABC中,根据勾股定理得:BC=x,在RtOEC中,OCE=30,OE=EC,即BE=EC,BE=3,OE=3,EC=6,则AE=6故答案为6.18、6【解析】分析:菱形的两条对角线的长分别是6和4,A(3,2).点A在反比例函数的图象上,解得k=6.【详解】请在此输入详解!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2).【解析】四边形ABCD是矩形,B=C=90,AB=CD,BC=AD,ADBC,EAD=AFB,DEAF,AED=90,在ADE和FAB中,ADEFAB(AAS),AE=BF=1BF=FC=1BC=
19、AD=2故在RtADE中,ADE=30,DE=,的长=.20、甲、乙获胜的机会不相同.【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.甲、乙获胜的机会不相同.考点:可能性大小的判断点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.21、(1)200;(2)54;(3)见解析;(4)【解析】(1)根据A的人数及所占的百分比即可求出总人数;(2)用D的人数除以总人数再乘360即可得出答案; (3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用
20、概率公式求解即可【详解】解:(1)学生报名总人数为(人),故答案为:200;(2)项目所在扇形的圆心角等于,故答案为:54;(3)项目的人数为,补全图形如下:(4)画树状图得:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.恰好选中甲、乙两名同学的概率为.【点睛】本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键22、(1)作图见解析;(2)EB是平分AEC,理由见解析; (3)PFB能由都经过P点的两次变换与PAE组成一个等腰三角形,变换的方法为:将BPF绕点B顺时针旋转120和EPA重合,沿PF折叠,沿AE折叠【解析】【分析】(1)根据
21、作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出ADEBCE,得出AED=BEC,再用锐角三角函数求出AED,即可得出结论;(3)先判断出AEPFBP,即可得出结论【详解】(1)依题意作出图形如图所示;(2)EB是平分AEC,理由:四边形ABCD是矩形,C=D=90,CD=AB=2,BC=AD=,点E是CD的中点,DE=CE=CD=1,在ADE和BCE中,ADEBCE,AED=BEC,在RtADE中,AD=,DE=1,tanAED=,AED=60,BCE=AED=60,AEB=180AEDBEC=60=BEC,BE平分AEC;(3)BP=2CP,BC=,CP=,
22、BP=,在RtCEP中,tanCEP=,CEP=30,BEP=30,AEP=90,CDAB,F=CEP=30,在RtABP中,tanBAP=,PAB=30,EAP=30=F=PAB,CBAF,AP=FP,AEPFBP,PFB能由都经过P点的两次变换与PAE组成一个等腰三角形,变换的方法为:将BPF绕点B顺时针旋转120和EPA重合,沿PF折叠,沿AE折叠【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出AEPFBP是解本题的关键23、2x27xy,1【解析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,
23、然后把x、y的值代入求值即可.【详解】原式x24xy+4y2+x24xy+xy4y22x27xy,当x5,y时,原式5071【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.24、(1)见解析;(2)图见解析;.【解析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答【详解】解:(1)A1B1C1如图所示(2)A2B2C2
24、如图所示A1B1C1放大为原来的2倍得到A2B2C2,A1B1C1A2B2C2,且相似比为SA1B1C1:SA2B2C2=()2=25、(1)5.6(2)货物MNQP应挪走,理由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45=4在RtACD中,ACD=30AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45=4 在RtACD中,CD=ACcos30= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走26、【解析】先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可
25、求解;【详解】解:原式 【点睛】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.27、(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到ABD=90,再根据切线的性质得到OBC=90,然后利用等量代换进行证明;(2)证明AOPABD,然后利用相似比求BP的长详(1)证明:连接OB,如图,AD是O的直径,ABD=90,A+ADB=90,BC为切线,OBBC,OBC=90,OBA+CBP=90,而OA=OB,A=OBA,CBP=ADB;(2)解:OPAD,POA=90,P+A=90,P=D,AOPABD,即,BP=1点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和相似三角形的判定与性质