《2023届甘肃省天水市十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届甘肃省天水市十校联考最后数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,在平面直角坐标系中,ABC与A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A(4,3)B(3,4)C(3,3)D(4,4)2如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A主视图B俯视图C左视图D一样大3如图,是直角三角形,点在反比
2、例函数的图象上若点在反比例函数的图象上,则的值为( )A2B-2C4D-44已知关于的方程,下列说法正确的是A当时,方程无解B当时,方程有一个实数解C当时,方程有两个相等的实数解D当时,方程总有两个不相等的实数解5根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k0),下列图象能正确反映p与v之间函数关系的是()ABCD6已知数a、b、c在数轴上的位置如图所示,化简|a+b|cb|的结果是()Aa+bBacCa+cDa+2bc7轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/
3、时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出的方程是( ).ABCD8不等式组的解集为则的取值范围为( )ABCD9中国在第二十三届冬奥会闭幕式上奉献了2022相约北京的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为()A8.1106B8.1105C81105D8110410下列命题中,真命题是()A如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D如果一条直线上的点都在一个圆的外部
4、,那么这条直线与这个圆相离二、填空题(本大题共6个小题,每小题3分,共18分)11在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a)如图,若曲线 与此正方形的边有交点,则a的取值范围是_12如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_13如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_cm14如图,在中,AB为直径,点C在上,的平分线交于D,则_15
5、某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.16小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 三、解答题(共8题,共72分)17(8分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本求出y与x的函数关系式;当文具店每周销售这种纪念册获
6、得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?18(8分)如图,一次函数y=2x4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1(1)求反比例函数的解析式;(2)点P是x轴上一动点,ABP的面积为8,求P点坐标19(8分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶在A处测得岸边一建筑物P在北偏东30方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西
7、60方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号)20(8分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元(毛利润=销售额生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x
8、的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?21(8分)已知,四边形ABCD中,E是对角线AC上一点,DEEC,以AE为直径的O与边CD相切于点D,点B在O上,连接OB求证:DEOE;若CDAB,求证:BC是O的切线;在(2)的条件下,求证:四边形ABCD是菱形22(10分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度(结果保留根号)23(12分)如图,四边形ABCD的顶点在O上,BD是O
9、的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AHCE,垂足为点H,已知ADEACB(1)求证:AH是O的切线;(2)若OB4,AC6,求sinACB的值;(3)若,求证:CDDH24已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米)参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标【详解】
10、如图,点P的坐标为(-4,-3)故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心2、C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C3、D【解析】要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.【详解】过点、作轴,轴,分别于、,设点的坐标是,则,因为点在反比例函数的图象上,则,点在反比例函数的图象上,点的坐标是,.故选:.【点睛】
11、本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.4、C【解析】当时,方程为一元一次方程有唯一解当时,方程为一元二次方程,的情况由根的判别式确定:,当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解综上所述,说法C正确故选C5、C【解析】【分析】根据题意有:pv=k(k为常数,k0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】pv=k(k为常数,k0)p=(p0,v0,k0),故选C【点睛】本题考查了反比例函数的应用,
12、现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限6、C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可【详解】解:通过数轴得到a0,c0,b0,|a|b|c|,a+b0,cb0|a+b|cb|=a+bb+c=a+c,故答案为a+c故选A7、A【解析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系,据此列出方程即可【详解】解:设A港和B港相距x千米,可得
13、方程:故选:A【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度8、B【解析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可【详解】解:解不等式组,得不等式组的解集为x2,k12,解得k1故选:B【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中9、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数
14、绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】810 000=8.11故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、D【解析】根据两圆的位置关系、直线和圆的位置关系判断即可【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这
15、条直线与这个圆相离,D是真命题; 故选:D【点睛】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当dR+r时两圆外离;当d=R+r时两圆外切;当R-rdR+r(Rr)时两圆相交;当d=R-r(Rr)时两圆内切;当0dR-r(Rr)时两圆内含二、填空题(本大题共6个小题,每小题3分,共18分)11、1a【解析】根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围【详解】解:反比例函数经过点A和点C当反比例函数经过点A时,即=3,解得:a=(负根舍去);当反比例函数经过点C时,即=3,解得:a=1(负根舍去),则1a故答案为:
16、1a【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k12、31【解析】通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明PABQAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长【详解】如图,当Q在对角线BD上时,BQ最小连接BP,由旋转得:AP=AQ,PAQ=90,PAB+BAQ=90四边形ABCD为正方形,AB=AD,BAD=90,BAQ+DAQ=90,PAB=DAQ,PABQAD,QD=PB=1在RtABD中,AB=A
17、D=3,由勾股定理得:BD=,BQ=BDQD=31,即BQ长度的最小值为(31)故答案为31【点睛】本题是圆的综合题考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值13、2【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度圆柱底面的周长为6cm,圆柱高为2cm,AB2cm,BCBC3cm,AC222+3213,ACcm,这圈金属丝的周长最小为2AC2cm故答案为2【点睛】本题考
18、查了平面展开最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决14、1【解析】由AB为直径,得到,由因为CD平分,所以,这样就可求出【详解】解:为直径,又平分,故答案为1【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度15、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的
19、绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础16、3.551【解析】科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数【详解】3550000=3.551,故答案是:3.551【点睛】考查
20、科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值三、解答题(共8题,共72分)17、(1)y=2x+80(20x28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元【解析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润销售量:w(x20)(2x80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为ykxb.把(22,36)与(24,32)代入,得 解
21、得 y2x80(20x28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x20)y150,即(x20)(2x80)150.解得x125,x235(舍去)答:每本纪念册的销售单价是25元(3)由题意,可得w(x20)(2x80)2(x30)2200.售价不低于20元且不高于28元,当x30时,y随x的增大而增大,当x28时,w最大2(2830)2200192(元)答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元18、(1)y=;(2)(4,0)或(0,0)【解析】(1)把x=1代入一次函数解析式求得A
22、的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x4,可得y=214=2,A(1,2),把(1,2)代入y=,可得k=12=6,反比例函数的解析式为y=;(2)根据题意可得:2x4=,解得x1=1,x2=1,把x2=1,代入y=2x4,可得y=6,点B的坐标为(1,6)设直线AB与x轴交于点C,y=2x4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则|x2|(2+6)=8,解得x=4或0,点P的坐标为(4,0)或(0,0)【点睛】本题主要考查用待
23、定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。19、100米. 【解析】【分析】如图,作PCAB于C,构造出RtPAC与RtPBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.【详解】如图,过P点作PCAB于C,由题意可知:PAC=60,PBC=30,在RtPAC中,tanPAC=,AC=PC,在RtPBC中,tanPBC=,BC=PC,AB=AC+BC=PC+PC=1040=400,PC=100,答:建筑物P到赛道AB的距离为100米【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.20、(1)
24、y=x1z=x+30(0x100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的表达式及毛利润销售额生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图可得函数经过点(100,1000),设抛物线的解析式为yax1(a0),将点(100,1000)代入得:100010000a,解得:a,故y与x之间的关系式为yx1图可得:函数经过点(0,30)、(100,10),设z
25、kxb,则,解得: ,故z与x之间的关系式为zx30(0x100);(1)Wzxyx130xx1x130x(x1150x)(x75)11115,0,当x75时,W有最大值1115,年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y360,得x1360,解得:x60(负值舍去),由图象可知,当0y360时,0x60,由W(x75)11115的性质可知,当0x60时,W随x的增大而增大,故当x60时,W有最大值1080,答:今年最多可获得毛利润1080万元【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.21、(1)证明见解析;
26、(2)证明见解析;(3)证明见解析.【解析】(1)先判断出2+390,再判断出12即可得出结论;(2)根据等腰三角形的性质得到3CODDEO60,根据平行线的性质得到41,根据全等三角形的性质得到CBOCDO90,于是得到结论;(3)先判断出ABOCDE得出ABCD,即可判断出四边形ABCD是平行四边形,最后判断出CDAD即可【详解】(1)如图,连接OD,CD是O的切线,ODCD,2+31+COD90,DEEC,12,3COD,DEOE;(2)ODOE,ODDEOE,3CODDEO60,2130,ABCD,41,124OBA30,BOCDOC60,在CDO与CBO中,CDOCBO(SAS),C
27、BOCDO90,OBBC,BC是O的切线;(3)OAOBOE,OEDEEC,OAOBDEEC,ABCD,41,124OBA30,ABOCDE(AAS),ABCD,四边形ABCD是平行四边形,DAEDOE30,1DAE,CDAD,ABCD是菱形【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出ABOCDE是解本题的关键22、CD的长度为1717cm【解析】在直角三角形中用三角函数求出FD,BE的长,而FCAEABBE,而CDFCFD,从而得到答案.【详解】解:由题意,在RtBEC中,E=90,EBC=60,BCE=30,tan30=,B
28、E=ECtan30=51=17(cm);CF=AE=34+BE=(34+17)cm,在RtAFD中,FAD=45,FDA=45,DF=AF=EC=51cm,则CD=FCFD=34+1751=1717,答:CD的长度为1717cm【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.23、(1)证明见解析;(2);(3)证明见解析.【解析】(1)连接OA,证明DABDAE,得到ABAE,得到OA是BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明CDFAOF,根据相似三角形的性质得到CDCE,根据等腰三
29、角形的性质证明【详解】(1)证明:连接OA,由圆周角定理得,ACBADB,ADEACB,ADEADB,BD是直径,DABDAE90,在DAB和DAE中, ,DABDAE,ABAE,又OBOD,OADE,又AHDE,OAAH,AH是O的切线;(2)解:由(1)知,EDBE,DBEACD,EACD,AEACAB1在RtABD中,AB1,BD8,ADEACB,sinADB,即sinACB;(3)证明:由(2)知,OA是BDE的中位线,OADE,OADECDFAOF,CDOADE,即CDCE,ACAE,AHCE,CHHECE,CDCH,CDDH【点睛】本题考查的是圆的知识的综合应用,掌握圆周角定理、相
30、似三角形的判定定理和性质定理、三角形中位线定理是解题的关键24、 (1)坡顶到地面的距离为米;移动信号发射塔的高度约为米【解析】延长BC交OP于H.在RtAPD中解直角三角形求出AD10.PD24.由题意BHPH.设BCx.则x+1024+DH.推出ACDHx14.在RtABC中.根据tan76,构建方程求出x即可.【详解】延长BC交OP于H斜坡AP的坡度为1:2.4,设AD5k,则PD12k,由勾股定理,得AP13k,13k26,解得k2,AD10,BCAC,ACPO,BHPO,四边形ADHC是矩形,CHAD10,ACDH,BPD45,PHBH,设BCx,则x+1024+DH,ACDHx14,在RtABC中,tan76,即4.1解得:x18.7,经检验x18.7是原方程的解答:古塔BC的高度约为18.7米【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形