《上海市十二校2023年高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《上海市十二校2023年高三下学期联合考试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1正项等差数列的前和为,已知,则=( )A35B36C45D542直线与圆的位置关系是( )A相交B相切C相离D相交或相切3泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步
2、线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( )A甲走桃花峪登山线路B乙走红门盘道徒步线路C丙走桃花峪登山线路D甲走天烛峰登山线路4已知角的终边经过点,则的值是A1或B或C1或D或5过双曲线的左焦点作倾斜角为的直线,若与轴的交点坐标为,则该双曲线的
3、标准方程可能为( )ABCD6一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )ABCD7若函数()的图象过点,则( )A函数的值域是B点是的一个对称中心C函数的最小正周期是D直线是的一条对称轴8九章算术是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )ABCD9设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为( )ABCD10设变量满足约束条件,则目标函数的最大值是( )A7B5C3D211已知集合,
4、集合,则( ).ABCD12中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B从2014年到2018年这5年,高铁运营里程与年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列二、填空题:本题共4小题,每小题5分,共20分。13在的展开式中,常数项为_.(用数字作
5、答)14某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有_种.15函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为_.16 “”是“”的_条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知是等差数列,满足,数列满足,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和
6、.18(12分) 选修4-4:极坐标与参数方程 在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值19(12分)已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.()求椭圆E的方程;()若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.20(12分)设函数(1)当时,求不等式的解集;(2)当时,求实数的取值范围21(12分)已知函数
7、(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,满足,证明:22(10分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已
8、知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,解得或(舍),故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质()与前 项和的关系.2、D【解析】由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论【详解】解:由题意,圆的圆心为,半径,圆心到直线的距离为,故选:D【
9、点睛】本题主要考查直线与圆的位置关系,属于基础题3、D【解析】甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路故
10、选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.4、B【解析】根据三角函数的定义求得后可得结论【详解】由题意得点与原点间的距离当时,当时,综上可得的值是或故选B【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可5、A【解析】直线的方程为,令,得,得到a,b的关系,结合选项求解即可【详解】直线的方程为,令,得.因为,所以,只有选项满足条件.故选:A【点睛】本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.6、
11、B【解析】因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.7、A【解析】根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,故,对于A,由,则,故A正确;对于B,当时,故B错误;对于C,故C错误;对于D,当时,故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题
12、.8、C【解析】利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.【详解】由题意,直角三角形的斜边长为,利用等面积法,可得其内切圆的半径为,所以向次三角形内投掷豆子,则落在其内切圆内的概率为.故选:C.【点睛】本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.9、B【解析】由圆过原点,知中有一点与原点重合,作出图形,由,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积【详解】由题意圆过原点,所以原点是
13、圆与抛物线的一个交点,不妨设为,如图,由于,点坐标为,代入抛物线方程得,故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解10、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数
14、的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.11、A【解析】算出集合A、B及,再求补集即可.【详解】由,得,所以,又,所以,故或.故选:A.【点睛】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.12、D【解析】由折线图逐项分析即可求解【详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计
15、的知识,考查数据处理能力和应用意识,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.14、1344【解析】分四种情况讨论即可【详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有: 所以共有1344种故答案为:1344【点睛】考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.15、【解析】令,则,恰有四个解.由判断函数增减性,求出最小值,列出相应不等式求解得出的取值范围.【详解】解:令,则
16、,恰有四个解.有两个解,由,可得在上单调递减,在上单调递增,则,可得.设的负根为,由题意知,则,.故答案为:.【点睛】本题考查导数在函数当中的应用,属于难题.16、充分不必要【解析】由余弦的二倍角公式可得,即或,即可判断命题的关系.【详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要【点睛】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项
17、和公式即可求得数列前n项和试题解析:()设等差数列an的公差为d,由题意得d= 1an=a1+(n1)d=1n设等比数列bnan的公比为q,则q1=8,q=2,bnan=(b1a1)qn1=2n1, bn=1n+2n1()由()知bn=1n+2n1, 数列1n的前n项和为n(n+1),数列2n1的前n项和为1= 2n1,数列bn的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和18、 (1) 的极坐标方程为.曲线的直角坐标方程为. (2) 【解析】(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直角坐标方程;(2)设点、
18、的极坐标分别为,将 分别代入曲线、极坐标方程得:,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,将 分别代入曲线、极坐标方程得:,则 ,其中为锐角,且满足,当时,取最大值,此时, 【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.19、();()4.【解析】() 结合已
19、知可得,求出a,b的值,即可得椭圆方程;()由题意可知,直线的斜率存在,设出直线方程,联立直线方程与椭圆方程,利用判别式等于0可得,联立直线方程与圆的方程,结合根与系数的关系求得,利用弦长公式及点到直线的距离公式,求出,得到,整理后利用基本不等式求最值.【详解】解:()可得,结合,解得,得椭圆方程;()易知直线的斜率k存在,设:,由,得,由,得,设点O到直线:的距离为d,由,得, ,而,易知,则,四边形的面积当且仅当,即时取“”.四边形面积的最大值为4.【点睛】本题考查了由求椭圆的标准方程,直线与椭圆的位置关系,考查了学生的计算能力,综合性比较强,属于难题.20、 (1) (2) 当时,的取值
20、范围为;当时,的取值范围为【解析】(1)当时,分类讨论把不等式化为等价不等式组,即可求解 (2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解【详解】(1)当时,不等式可化为或或 ,解得不等式的解集为 (2)由绝对值的三角不等式,可得, 当且仅当时,取“”, 所以当时,的取值范围为;当时,的取值范围为【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题21、(1)(2)见解析【解析】(1)分离得到,求的最小值即可求得的取值范围;(2)先求
21、出,得到,利用乘变化即可证明不等式.【详解】解:(1)设,在上单调递减,在上单调递增故有解,即的取值范围为(2),当且仅当时等号成立,即当且仅当,时等号成立,即成立【点睛】此题考查不等式的证明,注意定值乘变化的灵活应用,属于较易题目.22、(1);(2)分布列见解析,期望为【解析】(1)甲同学至少抽到2道B类题包含两个事件:一个抽到2道B类题,一个是抽到3个B类题,计算出抽法数后可求得概率;(2)的所有可能值分别为,依次计算概率得分布列,再由期望公式计算期望【详解】(1)令“甲同学至少抽到2道B类题”为事件,则抽到2道类题有种取法,抽到3道类题有种取法,;(2)的所有可能值分别为,的分布列为:0123【点睛】本题考查古典概型,考查随机变量的概率分布列和数学期望解题关键是掌握相互独立事件同时发生的概率计算公式