《2023届黑龙江省鹤岗市重点中学十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省鹤岗市重点中学十校联考最后数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1小轩从如图所示的二次函数y=ax2+bx+c(a0)的图象中,观察得出了下面五条信息:ab0;a+b+c0;b+2c0;a2b+4c0;你认为其中正确信息的个数有A2个B3个C4
2、个D5个2在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为有公共顶点且相等的两个角是对顶角 若,则它们互余A4BCD3如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD4已知函数,则使y=k成立的x值恰好有三个,则k的值为( )A0B1C2D35如图,反比例函数(x0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )A1B2C3D46 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若150,则2()A20B30C40D507下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A2B1C0
3、D18下列函数中,y随着x的增大而减小的是( )Ay=3xBy=3xCD9已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=反比例函数y=在第一象限图象经过点A,与BC交于点FSAOF=,则k=()A15B13C12D510已知O及O外一点P,过点P作出O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为所求(如图1)乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上,记这时直角顶点的
4、位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对112(5)的值是()A7 B7 C10 D1012如图,在三角形ABC中,ACB=90,B=50,将此三角形绕点C沿顺时针方向旋转后得到三角形ABC,若点B恰好落在线段AB上,AC、AB交于点O,则COA的度数是()A50B60C70D80二、填空题:(本大题共6个小题,每小题4分,共24分)13同圆中,已知弧AB所对的圆心角是100,则弧AB所对的圆周角是_14一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果
5、为127,则输入的最小正整数是_15在ABC中,AB=AC,把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N如果CAN是等腰三角形,则B的度数为_16如图,在平行四边形中,点在边上,将沿折叠得到,点落在对角线上若,则的周长为_17竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第_秒时离地面最高18如图,ABC中,ABBD,点D,E分别是AC,BD上的点,且ABDDCE,若BEC105,则A的度数是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)全民健身运动
6、已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有 人,图表中的 , .统计图中,类所对应的扇形的圆心角的度数是 度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.20(6分)学生对待学习的态度一直是教育工作者关注的问题之一为此,某区教委对该区部分学校的八年级学生对待学习的态度进
7、行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图和图的统计图(不完整)请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了 名学生;将图补充完整;求出图中C级所占的圆心角的度数.21(6分)如图,在平面直角坐标系中,一次函数yx+2的图象交x轴于点P,二次函数yx2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+17(1)求二次函数的解析式和该二次函数图象的顶点的坐标(2)若二次函数yx2+x+m的图象与一次函数yx+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得MAB
8、是以ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由22(8分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点求反比例函数和一次函数的解析式;直接写出当x0时,的解集点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小23(8分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A处时,有ABAB(1)求A到BD的距离;(2)求A到地面的距离24(10分)(1)计算:;(2)已知
9、ab,求(a2)2+b(b2a)+4(a1)的值25(10分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 ACCB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)如图,把长方形沿着 OP 折叠,点 B 的对应点 B恰好落在 AC 边上,求点 P 的坐标(3)点 P 在运动过程中是否存在使BDP 为等腰三角形?若存在,请求
10、出点 P 的坐标;若 不存在,请说明理由26(12分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使BEDC(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC8,cosBED,求AD的长27(12分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为_;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生
11、中,课外最喜欢参加的运动项目是乒乓球的人数约为1200=108”,请你判断这种说法是否正确,并说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】试题分析:如图,抛物线开口方向向下,a1对称轴x,1ab1故正确如图,当x=1时,y1,即a+b+c1故正确如图,当x=1时,y=ab+c1,2a2b+2c1,即3b2b+2c1b+2c1故正确如图,当x=1时,y1,即ab+c1,抛物线与y轴交于正半轴,c1b1,cb1(ab+c)+(cb)+2c1,即a2b+4c1故正确如图,对称轴,则故正确综上所述,正确的结论是,
12、共5个故选D2、D【解析】首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出即可【详解】解:有公共顶点且相等的两个角是对顶角,错误;,正确;,错误;若,则它们互余,错误;则,故选D【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值3、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.4、D【解析】解:如图:利用顶点式及取值范围
13、,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.5、C【解析】本题可从反比例函数图象上的点E、M、D入手,分别找出OCE、OAD、矩形OABC的面积与|k|的关系,列出等式求出k值【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MGy轴于点G,作MNx轴于点N,则SONMG=|k|又M为矩形ABCO对角线的交点,S矩形ABCO=4SONMG=4|k|,函数图象在第一象限,k0,解得:k=1故选C【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度
14、关注6、C【解析】由两直线平行,同位角相等,可求得3的度数,然后求得2的度数【详解】1=50,3=1=50,2=9050=40.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.7、A【解析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解【详解】|-1|=1,|-1|=1,|-1|-1|=10,四个数表示在数轴上,它们对应的点中,离原点最远的是-1故选A【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想8、B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=3x,y随着x的增大而减小,正确
15、;C、,每个象限内,y随着x的增大而减小,故此选项错误;D、,每个象限内,y随着x的增大而增大,故此选项错误;故选B考点:反比例函数的性质;正比例函数的性质9、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值【详解】过点A作AMx轴于点M,如图所示设OA=a=OB,则,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a,a)四边形OACB是菱形,SAOF=,OBAM=
16、,即aa=39,解得a=,而a0,a=,即A(,6),点A在反比例函数y=的图象上,k=6=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=S菱形OBCA10、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA,所以OMA+AMP=O+MPA=90,得出MP是O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,所以OMP=90,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平
17、分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90,OMMP,MP是O的切线;(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90,MP是O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性11、D【解析】根据有理数乘法法则计算.【详解】2(5)=+(25)=10.故选D.【点睛】考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(
18、3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0 .12、B【解析】试题分析:在三角形ABC中,ACB=90,B=50,A=180ACBB=40由旋转的性质可知:BC=BC,B=BBC=50又BBC=A+ACB=40+ACB,ACB=10,COA=AOB=OBC+ACB=B+ACB=60故选B考点:旋转的性质二、填空题:(本大题共6个小题,每小题4分,共24分)13、50【解析】【分析】直接利用圆周角定理进行求解即可【详解】弧AB所对的圆心角是100,弧AB所对的圆周角为50,故答案为:
19、50【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半14、15【解析】分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值详解: 当y=127时, 解得:x=43;当y=43时,解得:x=15;当y=15时, 解得 不符合条件则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.15、或【解析】MN是AB的中垂线,则ABN是等腰三角形,且NA=NB,即可得到B=BAN=C然后对ANC中的边进行讨论,然后在ABC中,利用三角形内角和定理即可求得B的度
20、数解:把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,MN是AB的中垂线NB=NAB=BAN,AB=ACB=C设B=x,则C=BAN=x1)当AN=NC时,CAN=C=x则在ABC中,根据三角形内角和定理可得:4x=180,解得:x=45则B=45;2)当AN=AC时,ANC=C=x,而ANC=B+BAN,故此时不成立;3)当CA=CN时,NAC=ANC=在ABC中,根据三角形内角和定理得到:x+x+x+=180,解得:x=36故B的度数为 45或3616、6.【解析】先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=
21、BE,从而可求出的周长.【详解】解:四边形是平行四边形,BC=AD=5,,AC= =4沿折叠得到,AF=AB=3,EF=BE,的周长=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案为6.【点睛】本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.17、.【解析】首先根据题意得出m的值,进而求出t的值即可求得答案【详解】竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h2t2+mt+,小球经过秒落地,t时,h0,则02()2+m+,解得:m,当t时,h最大,故答案为:【点睛】本题考查了二次函数的应用,正
22、确得出m的值是解题关键18、85【解析】设A=BDA=x,ABD=ECD=y,构建方程组即可解决问题【详解】解:BABD,ABDA,设ABDAx,ABDECDy,则有,解得x85,故答案为85【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)150、45、36;(2)28.8;(3)450人【解析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360
23、乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得【详解】解:(1)接受问卷调查的共有3020%=150人,m=150-(12+30+54+9)=45,n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为故答案为:28.8;(3)(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小20、(1)200,(2)图见试题解析 (3)540【解析】试题分析:(1)根据A级的人数与所占的百分比列式进行计
24、算即可求出被调查的学生人数;(2)根据总人数求出C级的人数,然后补全条形统计图即可;(3)1减去A、B两级所占的百分比乘以360即可得出结论试题解析:(1)调查的学生人数为:=200名;(2)C级学生人数为:200-50-120=30名,补全统计图如图;(3)学习态度达标的人数为:3601-(25%+60%=54答:求出图中C级所占的圆心角的度数为54考点:条形统计图和扇形统计图的综合运用21、(1)yx2+x+2(x)2+,顶点坐标为(,);(2)存在,点M(,0)理由见解析【解析】(1)由根与系数的关系,结合已知条件可得9+4m17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二
25、次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数yx+2联立并解得x0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BMAB交x轴于点M,证得APOMPB,根据相似三角形的性质可得 ,代入数据即可求得MP,再求得OM,即可得点M的坐标为(,0)【详解】(1)由题意得:x1+x23,x1x22m,x12+x22(x1+x2)22x1x217,即:9+4m17,解得:m2,抛物线的表达式为:yx2+x+2(x)2+,顶点坐标为(,);(2)存在,理由:将抛物线表达式和一次函数yx+2联立并解得:x0或,点A、B的坐标为(0,2)、(,),一次函数
26、yx+2与x轴的交点P的坐标为(6,0),点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、PB=,AP=2过点B作BMAB交x轴于点M,MBPAOP90,MPBAPO,APOMPB, , ,MP,OMOPMP6,点M(,0)【点睛】本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题22、(1),yx+5;(2)0x1或x4;(3)P的坐标为(,0),见解析.【解析】(1)把A(1,4)代入y,求出m4,把B(4,n)代入y,求出n
27、1,然后把把A(1,4)、(4,1)代入ykx+b,即可求出一次函数解析式;(2)根据图像解答即可;(3)作B关于x轴的对称点B,连接AB,交x轴于P,此时PA+PBAB最小,然后用待定系数法求出直线AB的解析式即可.【详解】解:(1)把A(1,4)代入y,得:m4,反比例函数的解析式为y;把B(4,n)代入y,得:n1,B(4,1),把A(1,4)、(4,1)代入ykx+b,得:,解得:,一次函数的解析式为yx+5;(2)根据图象得当0x1或x4,一次函数yx+5的图象在反比例函数y的下方;当x0时,kx+b的解集为0x1或x4;(3)如图,作B关于x轴的对称点B,连接AB,交x轴于P,此时
28、PA+PBAB最小,B(4,1),B(4,1),设直线AB的解析式为ypx+q,解得,直线AB的解析式为,令y0,得,解得x,点P的坐标为(,0)【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.23、(1)A到BD的距离是1.2m;(2)A到地面的距离是1m【解析】(1)如图2,作AFBD,垂足为F根据同角的余角相等证得2=3;再利用AAS证明ACBBFA,根据全等三角形的性质即可得AF=BC,根据BC=BDCD求得BC的长,即可得AF
29、的长,从而求得A到BD的距离;(2)作AHDE,垂足为H,可证得AH=FD,根据AH=BDBF求得AH的长,从而求得A到地面的距离.【详解】(1)如图2,作AFBD,垂足为FACBD,ACB=AFB=90;在RtAFB中,1+3=90; 又ABAB,1+2=90,2=3;在ACB和BFA中,ACBBFA(AAS);AF=BC,ACDE且CDAC,AEDE,CD=AE=1.8;BC=BDCD=31.8=1.2,AF=1.2,即A到BD的距离是1.2m (2)由(1)知:ACBBFA,BF=AC=2m,作AHDE,垂足为HAFDE,AH=FD,AH=BDBF=32=1,即A到地面的距离是1m【点睛
30、】本题考查了全等三角形的判定与性质的应用,作出辅助线,证明ACBBFA是解决问题的关键.24、(1);(1)1.【解析】(1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;(1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将ab的值整体代入计算可得【详解】(1)原式=4+181=4+141=11;(1)原式=a14a+4+b11ab+4a4=a11ab+b1=(ab)1,当ab=时,原式=()1=1【点睛】本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力2
31、5、(1)y=x+2;(2)y=x+2;(2)S=2t+16,点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)【解析】分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;(2)当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;设P(m,1),则PB=PB=m,根据勾股定理求出m的值,求出此时P坐标即可;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可详解:(1)如图1,OA=6,OB
32、=1,四边形OACB为长方形,C(6,1)设此时直线DP解析式为y=kx+b,把(0,2),C(6,1)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+12t=162t,S=2(162t)=2t+16;设P(m,1),则PB=PB=m,如图2,OB=OB=1,OA=6,AB=8,BC=18=2,PC=6m,m2=22+(6m)2,解得m=则此时点P的坐标是(,1);(3)存在,理由为:若BDP为等腰三角形,分三种情况考虑:如图3,当BD=BP1=OBOD=12=8,在RtBCP1中,BP1=8,B
33、C=6,根据勾股定理得:CP1=2,AP1=12,即P1(6,12);当BP2=DP2时,此时P2(6,6);当DB=DP3=8时,在RtDEP3中,DE=6,根据勾股定理得:P3E=2,AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键26、(1)AC与O相切,证明参见解析;(2).【解析】试题分析:(1)由于OCAD,那么OAD+AOC=90,又BE
34、D=BAD,且BED=C,于是OAD=C,从而有C+AOC=90,再利用三角形内角和定理,可求OAC=90,即AC是O的切线;(2)连接BD,AB是直径,那么ADB=90,在RtAOC中,由于AC=8,C=BED,cosBED=,利用三角函数值,可求OA=6,即AB=12,在RtABD中,由于AB=12,OAD=BED,cosBED=,同样利用三角函数值,可求AD试题解析:(1)AC与O相切弧BD是BED与BAD所对的弧,BAD=BED,OCAD,AOC+BAD=90,BED+AOC=90,即C+AOC=90,OAC=90,ABAC,即AC与O相切;(2)连接BDAB是O直径,ADB=90,在
35、RtAOC中,CAO=90,AC=8,ADB=90,cosC=cosBED=,AO=6,AB=12,在RtABD中,cosOAD=cosBED=,AD=ABcosOAD=12=考点:1.切线的判定;2.解直角三角形27、(1)144;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】试题分析:(1)360(115%45%)=36040%=144;故答案为144;(2)“经常参加”的人数为:30040%=120人,喜欢篮球的学生人数为:120273320=12080=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200=160人;(4)这个说法不正确理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人考点:条形统计图;扇形统计图