《2023届黑龙江省哈尔滨市五常市达标名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省哈尔滨市五常市达标名校十校联考最后数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1函数yax+b与ybx+a的图象在同一坐标系内的大致位置是()ABCD2一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx
2、1=-3,x2=-73如图是一个几何体的三视图,则这个几何体是( )ABCD4如图,在热气球C处测得地面A、B两点的俯角分别为30、45,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A200米B200米C220米D100米5使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )ABCD6若方程x23x4=0的两根分别为x1和x2,则+的值是()A
3、1B2CD7a的倒数是3,则a的值是()ABC3D38如图,在正方形OABC中,点A的坐标是(3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A(2,4),(1,3)B(2,4),(2,3)C(3,4),(1,4)D(3,4),(1,3)9如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB添加一个条件,不能使四边形DBCE成为矩形的是( )AAB=BEBBEDCCADB=90DCEDE10如图所示,在平面直角坐标系中A(0,0),B(2,0),AP1B是等腰直角三角形,且P1=90,把AP1B绕点B顺时针旋转180,得到BP2C;把BP2C绕点C顺时针旋
4、转180,得到CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A(4030,1)B(4029,1)C(4033,1)D(4035,1)11下列等式正确的是()Ax3x2=xBa3a3=aCD(7)4(7)2=7212如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿ABC的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示ADP的面积y(cm2)关于x(cm)的函数关系的图象是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点
5、C在x轴的负半轴上,函数y(x0)的图象经过菱形OABC中心E点,则k的值为_14矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为_15若分式方程有增根,则m的值为_16如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_17若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|+3|ab|=_18如图,四边形ABCD内接于O,BD是O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则O的半径为
6、_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,直线y=x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D(1)求抛物线y=x2+bx+c的解析式(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2x11结合函数的图象,求x3的取值范围;若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值20(6分)如图,用细线悬挂一个小球,小球在竖直平面内
7、的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,AOB=66,求细线OB的长度(参考数据:sin660.91,cos660.40,tan662.25)21(6分)如图,直线y2x6与反比例函数y(k0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?22(8分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000
8、件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;抽查C厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率23(8分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示
9、牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?24(10分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字放回后洗匀,再从中抽取一张卡片,记录下数字请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率25(10分)(1)化简:(2)解不等式组26(12分)为了了解某校学生对以下四个电视节目:A最强大脑,B中国诗词大会,C朗读者,D出彩中国人的喜爱情况,
10、随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为_;在扇形统计图中,A部分所占圆心角的度数为_;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱中国诗词大会的学生有多少名?27(12分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米)
11、参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案【详解】分四种情况:当a0,b0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;当a0,b0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第二、三、四象限;y=b
12、x+a的图象经过第二、三、四象限,无选项符合故选B【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:当k0,b0,函数y=kx+b的图象经过第一、二、三象限;当k0,b0,函数y=kx+b的图象经过第一、三、四象限;当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;当k0,b0时,函数y=kx+b的图象经过第二、三、四象限2、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.3、B【解析】试题分
13、析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B考点:由三视图判断几何体4、D【解析】在热气球C处测得地面B点的俯角分别为45,BD=CD=100米,再在RtACD中求出AD的长,据此即可求出AB的长【详解】在热气球C处测得地面B点的俯角分别为45,BDCD100米,在热气球C处测得地面A点的俯角分别为30,AC2100200米,AD100米,ABAD+BD100+100100(1+)米,故选D【点睛】本题考查了解直角三角形的应用-仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形5、C【解析】根据已知三点和近似满足函数关系y
14、=ax2+bx+c(a0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41旋钮的旋转角度在36和54之间,约为41时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点6、C【解析】试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两
15、根之积x1x2=4代入,即可求出=故选C考点:根与系数的关系7、A【解析】根据倒数的定义进行解答即可【详解】a的倒数是3,3a=1,解得:a=故选A【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数8、A【解析】作CDx轴于D,作AEx轴于E,作BFAE于F,由AAS证明AOEOCD,得出AE=OD,OE=CD,由点A的坐标是(3,1),得出OE=3,AE=1,OD=1,CD=3,得出C(1,3),同理:AOEBAF,得出AE=BF=1,OEBF=31=2,得出B(2,4)即可【详解】解:如图所示:作CDx轴于D,作AEx轴于E,作BFAE于F,则AEO=ODC=BFA=90,OAE
16、+AOE=90四边形OABC是正方形,OA=CO=BA,AOC=90,AOE+COD=90,OAE=COD在AOE和OCD中,AOEOCD(AAS),AE=OD,OE=CD点A的坐标是(3,1),OE=3,AE=1,OD=1,CD=3,C(1,3)同理:AOEBAF,AE=BF=1,OEBF=31=2,B(2,4)故选A【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键9、B【解析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答【详解】四边形ABCD为平行四边形,ADBC,AD=BC,又AD=DE,DEBC,
17、且DE=BC,四边形BCED为平行四边形,A、AB=BE,DE=AD,BDAE,DBCE为矩形,故本选项错误;B、对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、ADB=90,EDB=90,DBCE为矩形,故本选项错误;D、CEDE,CED=90,DBCE为矩形,故本选项错误,故选B【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.10、D【解析】根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决【详解】解:由题意可得,点P1(1,1),点P2(3,-1),点
18、P3(5,1),P2018的横坐标为:22018-1=4035,纵坐标为:-1,即P2018的坐标为(4035,-1),故选:D【点睛】本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标11、C【解析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案【详解】解:A、x3-x2,无法计算,故此选项错误;B、a3a3=1,故此选项错误;C、(-2)2(-2)3=-,正确;D、(-7)4(-7)2=72,故此选项错误;故选C【点睛】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键12、B【解析】ADP的面积可分
19、为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象【详解】解:当P点由A运动到B点时,即0x2时,y2xx,当P点由B运动到C点时,即2x4时,y222,符合题意的函数关系的图象是B;故选B【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围二、填空题:(本大题共6个小题,每小题4分,共24分)13、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-
20、5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.14、6或2【解析】试题分析:根据P点的不同位置,此题分两种情况计算:点P在CD上;点P在AD上点P在CD上时,如图:PD=1,CD=AB=9,CP=6,EF垂直平分PB,四边形PFBE是邻边相等的矩形即正方形,EF过点C,BF=BC=6,由勾股定理求得EF=;点P在AD上时,如图:先建立相似三角形,过E作EQAB于Q,PD=1,AD=6,AP=1,AB=9,由勾股定理求得PB=1,EF垂直平分PB,1=2(同角
21、的余角相等),又A=EQF=90,ABPEFQ(两角对应相等,两三角形相似),对应线段成比例:,代入相应数值:,EF=2综上所述:EF长为6或2考点:翻折变换(折叠问题)15、-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出m的值【详解】方程两边都乘(x-1),得x-1(x-1)=-m原方程增根为x=1,把x=1代入整式方程,得m=-1,故答案为:-1【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值16、25【解析】试题解析:由题意 17、5a+4b3c【解析】直
22、接利用数轴结合二次根式、绝对值的性质化简得出答案【详解】由数轴可得:a+c0,b-c0,a-b0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c故答案为-5a+4b-3c【点睛】此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键18、【解析】如图,作辅助线CF;证明CFAB(垂径定理的推论);证明ADAB,得到ADOC,ADECOE;得到AD:CO=DE:OE,求出CO的长,即可解决问题【详解】如图,连接CO并延长,交AB于点F;AC=BC,CFAB(垂径定理的推论);BD是O的直径,ADAB;设O的半径为r;ADOC,ADECOE,
23、AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,5:r=3:(r-3),解得:r=,故答案为【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(2)y=x24x+3;(2)2x34,m的值为或2【解析】(2)由直线y=x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)先求得抛物线的顶点坐标为D(2,2),当直线l2经过
24、点D时求得m=2;当直线l2经过点C时求得m=3,再由x2x22,可得2y33,即可2x3+33,所以2x34;分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得 y=x24x+3;(2)直线l2平行于x轴,y2=y2=y3=m,如图,y=x24x+3=(x2)22,顶点为D(2,2),当直线l2经过点D时,m=2;当直线l2经过点C时,m=3x2x22,2y33,
25、即2x3+33,得2x34,如图,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QNx2x22,x3x2=x2x2,即 x3=2x2x2,l2x轴,即PQx轴,点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,2x2=x22,即x2=4x2,x3=3x24,将点Q(x2,y2)的坐标代入y=x24x+3得y2=x224x2+3,又y2=y3=x3+3x224x2+3=x3+3,x224x2=(3x24)即 x22x24=2,解得x2=,(负值已舍去),m=()24+3=如图,当直线l2在x轴的上方时,点N在点P、
26、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ由上可得点P、Q关于直线l2对称,点N在抛物线的对称轴l2:x=2,又点N在直线y=x+3上,y3=2+3=2,即m=2故m的值为或2【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识在(2)中注意待定系数法的应用;在(2)注意利用数形结合思想;在(2)注意分情况讨论本题考查知识点较多,综合性较强,难度较大20、15cm【解析】试题分析:设细线OB的长度为xcm,作ADOB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在
27、RtAOD中,由三角函数得出方程,解方程即可试题解析:设细线OB的长度为xcm,作ADOB于D,如图所示:ADM=90,ANM=DMN=90,四边形ANMD是矩形,AN=DM=14cm,DB=145=9cm,OD=x9,在RtAOD中,cosAOD=,cos66=0.40,解得:x=15,OB=15cm21、(1)m8,反比例函数的表达式为y;(2)当n3时,BMN的面积最大【解析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)直线y=2x+6经过点A(1,m),m=21+6=8,A(1,8),反比例函数经过点A(1,8
28、),8=,k=8,反比例函数的解析式为y=(2)由题意,点M,N的坐标为M(,n),N(,n),0n6,0,SBMN=(|+|)n=(+)n=(n3)2+,n=3时,BMN的面积最大22、(1)500, 90;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数所占比例,D厂家对应的圆心角为360所占比例;(2)C厂的零件数=总数所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试题解析:(1)D厂的零件比例=1-20%-20
29、%-35%=25%,D厂的零件数=200025%=500件;D厂家对应的圆心角为36025%=90;(2)C厂的零件数=200020%=400件,C厂的合格零件数=40095%=380件,如图:(3)A厂家合格率=630(200035%)=90%,B厂家合格率=370(200020%)=92.5%,C厂家合格率=95%,D厂家合格率470500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=考点:1.条形统计图;2.扇形统计图;3. 树状图法.23、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见
30、解析【解析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+33x=550,x=50,经检验,符合题意,3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100y)个,根据题意得,意, y为正整数,y为50,51,52,共3中方案;有三种方案:温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,
31、垃圾箱48个,设总费用为w元W=50y+150(100y)=100y+15000,k=-100,w随y的增大而减小当y=52时,所需资金最少,最少是9800元【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键24、见解析,.【解析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符
32、合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率25、(1);(2)2x1【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可【详解】(1)原式;(2)不等式组整理得:, 则不等式组的解集为2x1【点睛】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.26、(1)120;(2) ;(3)答案见解析;(4)1650.【解析】(1)依据节目B的数据,即
33、可得到调查的学生人数;(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;(3)求得C部分的人数,即可将条形统计图补充完整;(4)依据喜爱中国诗词大会的学生所占的百分比,即可得到该校最喜爱中国诗词大会的学生数量【详解】,故答案为120;,故答案为;:,如图所示:,答:该校最喜爱中国诗词大会的学生有1650名【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答27、 (1)坡顶到地面的距离为米;移动信号发射塔的高度约为米【解析】延长BC交OP于H.在RtAPD中解直角三角形求出AD10.PD24.由题意BHPH.设
34、BCx.则x+1024+DH.推出ACDHx14.在RtABC中.根据tan76,构建方程求出x即可.【详解】延长BC交OP于H斜坡AP的坡度为1:2.4,设AD5k,则PD12k,由勾股定理,得AP13k,13k26,解得k2,AD10,BCAC,ACPO,BHPO,四边形ADHC是矩形,CHAD10,ACDH,BPD45,PHBH,设BCx,则x+1024+DH,ACDHx14,在RtABC中,tan76,即4.1解得:x18.7,经检验x18.7是原方程的解答:古塔BC的高度约为18.7米【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形