《2023届陕西省宝鸡市扶风县重点达标名校中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届陕西省宝鸡市扶风县重点达标名校中考数学猜题卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,以O为圆心的圆与直线交于A、B两点,若OAB恰为等边三角形,则弧AB的长度为( )ABCD2如图,ACB90,ACBC,ADCE,BECE,若AD3,BE1,则DE( )A1B2C3D43如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则ABC的正切值是( )AB2CD4如图,由
2、5个完全相同的小正方体组合成一个立体图形,它的左视图是()ABCD5如图,AB是O的一条弦,点C是O上一动点,且ACB=30,点E,F分别是AC,BC的中点,直线EF与O交于G,H两点,若O的半径为6,则GE+FH的最大值为()A6B9C10D126下列图形是中心对称图形的是( )ABCD7将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).ABCD8把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A16B17C18D199“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件10剪纸是水族的非
3、物质文化遗产之一,下列剪纸作品是中心对称图形的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,BD和CE是ABC的两条角平分线若A52,则12的度数为_12如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_13如图,AB是O的直径,CD是弦,CDAB于点E,若O的半径是5,CD8,则AE_14解不等式组 请结合题意填空,完成本题的解答()解不等式,得 ;()解不等式,得 ;()把不等式和的解集在数轴上表示出来:()原不等式组的解集为 15解不等式组,则该不等式组的最大整数解是_16分解因式:=_三、解答题
4、(共8题,共72分)17(8分)解不等式组: .18(8分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整)这次调查中,一共调查了_名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率19(8分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中
5、一个小长方形的对角线,请在大长方形中完成下列画图,要求:仅用无刻度直尺,保留必要的画图痕迹在图1中画出一个45角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线20(8分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CNBE,垂足为M,交AB于点N(1)求证:ABEBCN;(2)若N为AB的中点,求tanABE21(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图(1)测试不合格人数的中位数是 (2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数
6、平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图22(10分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知AEF90(1)求证:;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,AFEADC,AEF90如图2,若AFE45,求的值;如图3,若ABBC,EC3CF,直接写出cosAFE的值23(12分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是_
7、经过几秒,点M、点N分别到原点O的距离相等?24 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是 ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】过点作, ,
8、, 为等腰直角三角形, , 为等边三角形, , 故选C.2、B【解析】根据余角的性质,可得DCA与CBE的关系,根据AAS可得ACD与CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案【详解】ADC=BEC=90.BCE+CBE=90,BCE+CAD=90,DCA=CBE,在ACD和CBE中,,ACDCBE(AAS),CE=AD=3,CD=BE=1,DE=CECD=31=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.3、A【解析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理
9、得到ABC是直角三角形,根据正切的定义计算即可详解:连接AC,由网格特点和勾股定理可知,AC=,AC2+AB2=10,BC2=10,AC2+AB2=BC2,ABC是直角三角形,tanABC=.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键4、B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形故选B考点:简单组合体的三视图5、B【解析】首先连接OA、OB,根据圆周角定理,求出AOB=2ACB=60,进而判断出AOB为等边三角形;然后根据O的
10、半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可【详解】解:如图,连接OA、OB,ACB=30,AOB=2ACB=60,OA=OB,AOB为等边三角形,O的半径为6,AB=OA=OB=6,点E,F分别是AC、BC的中点,EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,当弦GH是圆的直径时,它的最大值为:62=12,GE+FH的最大值为:123=1故选:B【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度确定GH的位置是解题的关键.6、B【
11、解析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B.考点:中心对称图形.【详解】请在此输入详解!7、D【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1,再根据两直线平行,同位角相等可得2=1【详解】如图,由三角形的外角性质得:1=90+1=90+58=148直尺的两边互相平行,2=1=148故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟
12、记性质是解题的关键8、A【解析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.9、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件10、D【解析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做
13、中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义二、填空题(本大题共6个小题,每小题3分,共18分)11、64【解析】解:A=52,ABC+ACB=128BD和CE是ABC的两条角平分线,1=ABC,2=ACB,1+2=(ABC+ACB)=64故答案为64点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180是解题的关键12、2【解析】过点F作FEAD
14、于点E,则AE=AD=AF,故AFE=BAF=30,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADFSADF可得出其面积,再根据S阴影=2(S扇形BAFS弓形AF)即可得出结论【详解】如图所示,过点F作FEAD于点E,正方形ABCD的边长为2,AE=AD=AF=1,AFE=BAF=30,EF=S弓形AF=S扇形ADFSADF=, S阴影=2(S扇形BAFS弓形AF)=2=2()=【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力13、2【解析】连接OC,由垂径定理知,点E是CD的中点,在直角OCE中,利用勾股定理即可得到关于半径的方程,
15、求得圆半径即可【详解】设AE为x,连接OC,AB是O的直径,弦CDAB于点E,CD8,CEO90,CEDE4,由勾股定理得:OC2CE2OE2,5242(5x)2,解得:x2,则AE是2,故答案为:2【点睛】此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.14、详见解析.【解析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【详解】()解不等式,得:x1;()解不等式,得:x1;()把不等式和的解集在数轴上表示出来:()原不等式组的解集为:1x1,故答案为:x1、x1、1x1【点睛】本题考查了解一元一次不等式组的概念.15
16、、x=1【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解【详解】,由不等式得x1,由不等式得x-1,其解集是-1x1,所以整数解为0,1,2,1,则该不等式组的最大整数解是x=1故答案为:x=1【点睛】考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了16、【解析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式【详解】直接提取公因式即可:三、解答题(共8题,共72分)17、x2.【解析】
17、试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由得:x3,由得:x2,不等式组的解集为:x2.18、(1)200;(2)答案见解析;(3)【解析】(1)由题意得:这次调查中,一共调查的学生数为:4020%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:20030%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:4020%=20
18、0(名);故答案为:200;(2)C组人数:200407030=60(名) B组百分比:70200100%=35% 如图 (3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,一人是喜欢跳绳、一人是喜欢足球的学生的概率为:【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比19、(1)答案见解析;(2)答案见解析【解析】试题分析:(1)根据等腰直角三角形的性质即可解决问题(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问
19、题试题解析:(1)如图所示,ABC=45(AB、AC是小长方形的对角线)(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线考点:作图应用与设计作图20、(1)证明见解析;(2)【解析】(1)根据正方形的性质得到ABBC,ACBN90,1290,根据垂线和三角形内角和定理得到2390,推出13,根据ASA推出ABEBCN;(2)tanABE,根据已知求出AE与AB的关系即可求得tanABE.【详解】(1)证明:四边形ABCD为正方形AB=BC,A=CBN=90,1+2=90CMBE,2+3=901=3在
20、ABE和BCN中,ABEBCN(ASA);(2)N为AB中点,BN=AB又ABEBCN,AE=BN=AB在RtABE中,tanABE【点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出ABEBCN是解此题的关键.21、(1)1;(2)这两次测试的平均增长率为20%;(3)55%【解析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,
21、解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数参加测试的总人数100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解【详解】解:(1)将四次测试结果排序,得:30,40,50,60,测试不合格人数的中位数是(40+50)21故答案为1;(2)每次测试不合格人数的平均数为(60+40+30+50)41(人),第四次测试合格人数为121872(人)设这两次测试的平均增长率为x,根据题意得:50(1+x)272,解得:x10.220%,x22.2(不合题意,舍去),这两次测试的平均增长率为20%;(
22、3)50(1+20%)60(人),(60+40+30+50)(38+60+50+40+60+30+72+50)100%1%,11%55%补全条形统计图与扇形统计图如解图所示【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据22、(1)见解析;(2);cosAFE【解析】(1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;(2)如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;如图3,作交AD于
23、点T,作于H,证,设CF2,则CE6,可设ATx,则TF3x,分别用含x的代数式表示出AFE和D的余弦值,列出方程,求出x的值,即可求出结论【详解】(1)设BEEC2,则ABBC4,FECEAB,又,即,CF1,则,;(2)如图2,过F作交AD于点G,和是等腰直角三角形,AGFC,又,GAFCFE,又GFDF,;如图3,作交AD于点T,作于H,则,ATFC,又,且DAFE,TAFCFE,设CF2,则CE6,可设ATx,则TF3x,且,由,得,解得x5,【点睛】本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.23、(1)1;(2)经过2秒或2秒,点
24、M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论试题解析:(1)OB=3OA=1,B对应的数是1(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x点M、点N在点O两侧,则2-3x=2x,解得x=2;点M、点N重合,则,3x-2=2x,解得x=2所以经过2秒或2秒,点M、点N分别到原点O的距离相等24、(1
25、)150人;(2)补图见解析;(3)144;(4)300盒【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有3020%150人;(2)C类别人数为150(30+45+15)60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360144故答案为144(4)600()300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.