《2023届辽宁省沈阳市大东区中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届辽宁省沈阳市大东区中考联考数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,直线ABCD,AE平分CAB,AE与CD相交于点E,ACD=40,则DEA=()A40B110C70D1402把抛物线y2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()Ay2(x+1)2+1By2(x1)2+1Cy2(x1)21Dy2(x+1)213如图,在RtABC中,ACB=
2、90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A B1 C D4如图,矩形ABCD的顶点A、C分别在直线a、b上,且ab,1=60,则2的度数为( )A30B45C60D755若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m6223的结果是()A5B12C6D127下列各组数中,互为相反数的是()A2 与2B2与2C3与D3与3-8计算8+3的结果是()A11B5C5D119如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A正方体B球C圆锥D圆柱体10已知,C是线段
3、AB的黄金分割点,ACBC,若AB=2,则BC=()A3B(+1)C1D(1)二、填空题(本大题共6个小题,每小题3分,共18分)11关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_12已知O1、O2的半径分别为2和5,圆心距为d,若O1与O2相交,那么d的取值范围是_13如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是_m.14如果某数的一个平方根是5,那么这个数是_15圆锥的底面半径为6,母线长为10,则圆锥的侧面积为_cm216如图,在RtABC中,BAC=90,AB=AC=4,D是
4、BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_三、解答题(共8题,共72分)17(8分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C(1)求点 A 的坐标;(2)结合函数的图象,求当 y0 时,x 的取值范围18(8分)如图,在ABCD中,AEBC交边BC于点E,点F为边CD上一点,且DFBE.过点F作FGCD,交边AD于点G.求证:DGDC19(8分)解方程:=120(8分)如图,在直角坐标系xOy中,直线与双曲线相交于A(1,a)、B两点,BCx轴,垂足为C,AOC的面积是1求m、n的值;求直线AC的解
5、析式21(8分)在等腰RtABC中,ACB=90,AC=BC,点D是边BC上任意一点,连接AD,过点C作CEAD于点E(1)如图1,若BAD=15,且CE=1,求线段BD的长;(2)如图2,过点C作CFCE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM22(10分)如图,已知ABC中,AB=BC=5,tanABC=求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值23(12分)如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC下方抛物线上的动点(1)求抛物线的解析式;(2)过点P且与y轴平行的
6、直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由24计算:(3.14)0+|1|2sin45+(1)1参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】先由平行线性质得出ACD与BAC互补,并根据已知ACD=40计算出BAC的度数,再根据角平分线性质求出BAE的度数,进而得到DEA的度数【详解】ABCD,ACD+BAC=180,ACD=40,BAC=18040=140,AE平分CAB,BAE=BAC
7、=140=70,DEA=180BAE=110,故选B【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补2、B【解析】函数y=-2x2的顶点为(0,0),向上平移1个单位,再向右平移1个单位的顶点为(1,1),将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点3、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线即可求出.【详解】
8、ACB=90,A=30, BC=AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=AB= 4=2. E,F分别为AC,AD的中点, EF是ACD的中位线. EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.4、C【解析】试题分析:过点D作DEa,四边形ABCD是矩形,BAD=ADC=90,3=901=9060=30,ab,DEab,4=3=30,2=5,2=9030=60故选C考点:1矩形;2平行线的性质.5、B【解析】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=
9、3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故答案选B6、B【解析】先算乘方,再算乘法即可【详解】解:223431故选:B【点睛】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的7、A【解析】根据只有符号不同的两数互为相反数,可直接判断.【详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【点睛】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.8、B【解析】绝对值不等的异号加
10、法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1依此即可求解【详解】解:832故选B【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1从而确定用那一条法则在应用过程中,要牢记“先符号,后绝对值”9、D【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞【详解】根据三视图的知识来解答圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项故选D【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只
11、要弄清楚了立体图形的三视图,解决这类问题其实并不难10、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解:由于C为线段AB=2的黄金分割点,且ACBC,BC为较长线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍二、填空题(本大题共6个小题,每小题3分,共18分)11、k1【解析】根据一元二次方程根的判别式结合题意进行分析解答即可.【详解】关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,=,解得:.故答案为:.【点睛】熟知“在一元二次方程中,若
12、方程有两个不相等的实数根,则=”是解答本题的关键.12、3d7【解析】若两圆的半径分别为R和r,且Rr,圆心距为d:相交,则R-rdR+r,从而得到圆心距O1O2的取值范围【详解】O1和O2的半径分别为2和5,且两圆的位置关系为相交,圆心距O1O2的取值范围为5-2d2+5,即3d7.故答案为:3d7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.13、12【解析】由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案【详解】解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长
13、方形花圃的周长是.【点睛】此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.14、25【解析】利用平方根定义即可求出这个数.【详解】设这个数是x(x0),所以x(-5)225.【点睛】本题解题的关键是掌握平方根的定义.15、60【解析】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解解:圆锥的侧面积=610=60cm116、2 【解析】过点E作EFBC于F,根据已知条件得到BEF是等腰直角三角形
14、,求得BEABAE6,根据勾股定理得到BFEF3,求得DFBFBD,根据勾股定理即可得到结论【详解】解:过点E作EFBC于F,BFE90,BAC90,ABAC4,BC45,BC4,BEF是等腰直角三角形,BEABAE6,BFEF3,D是BC的中点,BD2,DFBFBD,DE=2故答案为2【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键三、解答题(共8题,共72分)17、(1);(2)【解析】(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出【详解】解:(1)当时
15、,函数的值为-2,点的坐标为 四边形为矩形,解方程,得点的坐标为点的坐标为(2)解方程,得由图象可知,当时,的取值范围是【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质18、证明见解析.【解析】试题分析:先由平行四边形的性质得到B=D,AB=CD,再利用垂直的定义得到AEB=GFD=90,根据“ASA”判定AEBGFD,从而得到AB=DC,所以有DG=DC试题解析:四边形ABCD为平行四边形,B=D,AB=CD,AEBC,FGCD,AEB=GFD=90,在AEB和GFD中,B=D,BE=DF,AEB=GFD,AEBGFD,
16、AB=DC,DG=DC考点:1全等三角形的判定与性质;2平行四边形的性质19、x=1【解析】方程两边同乘转化为整式方程,解整式方程后进行检验即可得.【详解】解:方程两边同乘得:,整理,得,解这个方程得,经检验,是增根,舍去,所以,原方程的根是【点睛】本题考查了解分式方程,解分式方程的关键是方程两边同乘分母的最简公分母化为整式方程然后求解,注意要进行检验.20、(1)m1,n1;(2)yx【解析】(1)由直线与双曲线相交于A(1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据AOC的面积为1可求得点A的坐标,从而求得结果;(2)设直线AC的解析式为ykxb,由图象过点A(1,1)
17、、C(1,0)根据待定系数法即可求的结果.【详解】(1)直线与双曲线相交于A(1,a)、B两点,B点横坐标为1,即C(1,0)AOC的面积为1,A(1,1)将A(1,1)代入,可得m1,n1;(2)设直线AC的解析式为ykxbykxb经过点A(1,1)、C(1,0)解得k,b直线AC的解析式为yx【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.21、 (1) 2 ;(2)见解析【解析】分析:(1)先求得:CAE=45-15=30,根据直角三角形30角的性质可得AC=2CE=2,再得ECD=90-60=30,设ED=
18、x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明ACEBCF,则BFC=AEC=90,证明C、M、B、F四点共圆,则BCM=MFB=45,由等腰三角形三线合一的性质可得AM=BM详解:(1)ACB=90,AC=BC,CAB=45,BAD=15,CAE=4515=30,RtACE中,CE=1,AC=2CE=2,RtCED中,ECD=9060=30,CD=2ED,设ED=x,则CD=2x,CE=x,x=1,x=,CD=2x=,BD=BCCD=ACCD=2;(2)如图2,连接CM,ACB=ECF=90,ACE=BCF,AC=BC,CE=CF,ACEB
19、CF,BFC=AEC=90,CFE=45,MFB=45,CFM=CBA=45,C、M、B、F四点共圆,BCM=MFB=45,ACM=BCM=45,AC=BC,AM=BM点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30角的性质和勾股定理,第二问有难度,构建辅助线,证明ACEBCF是关键22、(1)AC=;(2)【解析】【分析】(1)过A作AEBC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求【
20、详解】(1)如图,过点A作AEBC,在RtABE中,tanABC=,AB=5,AE=3,BE=4,CE=BCBE=54=1,在RtAEC中,根据勾股定理得:AC=;(2)DF垂直平分BC,BD=CD,BF=CF=,tanDBF=,DF=,在RtBFD中,根据勾股定理得:BD=,AD=5=,则【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.23、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,);(3) Q(4,1)或(-3,1).【解析】(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(
21、2)设P(m,m22m1),根据S四边形AECPSAECSAPC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出BACPCA45,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:819bc10,c1,解得b2,c1,所以抛物线的解析式yx22x1;(2)ACx轴,A(0,1),x22x11,解得x16,x20(舍),即C点坐标为(6,1),点A(0,1),点B(9,10),直线AB的解析式为yx1,设
22、P(m,m22m1),E(m,m1),PEm1(m22m1)m23m.ACPE,AC6,S四边形AECPSAECSAPCACEFACPFAC(EFPF)ACEP6(m23m)m29m.0m6,当m时,四边形AECP的面积最大值是,此时P();(3)yx22x1(x3)22,P(3,2),PFyFyp3,CFxFxC3,PFCF,PCF45,同理可得EAF45,PCFEAF,在直线AC上存在满足条件的点Q,设Q(t,1)且AB,AC6,CP,以C,P,Q为顶点的三角形与ABC相似,当CPQABC时,CQ:ACCP:AB,(6t):6,解得t4,所以Q(4,1);当CQPABC时,CQ:ABCP:
23、AC,(6t)6,解得t3,所以Q(3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与ABC相似,Q点的坐标为(4,1)或(3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏24、【解析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案【详解】原式【点睛】考核知识点:三角函数混合运算.正确计算是关键.