2023届湖北省荆州市洪湖市—重点达标名校十校联考最后数学试题含解析.doc

上传人:lil****205 文档编号:87841079 上传时间:2023-04-18 格式:DOC 页数:22 大小:1.16MB
返回 下载 相关 举报
2023届湖北省荆州市洪湖市—重点达标名校十校联考最后数学试题含解析.doc_第1页
第1页 / 共22页
2023届湖北省荆州市洪湖市—重点达标名校十校联考最后数学试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2023届湖北省荆州市洪湖市—重点达标名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖北省荆州市洪湖市—重点达标名校十校联考最后数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A1颗B2颗C3颗D4颗2如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x

2、的不等式kx+b的解集为Ax1B2x1C2x0或x1Dx23从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )ABCD4如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D105如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )A-5B-2C3D56如图,ABC中,AB=2,AC=3,1BC5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE

3、和正方形ACFG,则图中阴影部分的最大面积为()A6B9C11D无法计算7已知x1,x2是关于x的方程x2+bx3=0的两根,且满足x1+x23x1x2=5,那么b的值为()A4 B4 C3 D38如果,那么代数式的值是( )A6B2C-2D-69下列算式中,结果等于a5的是()Aa2+a3Ba2a3Ca5aD(a2)310我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()AB2CD二、填空题(本大题共6个小

4、题,每小题3分,共18分)11如图,、分别为ABC的边、延长线上的点,且DEBC如果,CE=16,那么AE的长为_ 12如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是_13若方程x22x10的两根分别为x1,x2,则x1+x2x1x2的值为_14若2ab=5,a2b=4,则ab的值为_.15已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_16如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_.三、解答题(共8题,共72分)17(8分)计算:(

5、1)20182+|1|+3tan3018(8分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售市场调查反映:每降价1元,每星期可多卖30件已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?19(8分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作如的“理想值”(1)若点在直线上,则点的“理想值”等于_;如图,的半径为1若点

6、在上,则点的“理想值”的取值范围是_(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值(要求画图位置准确,但不必尺规作图)20(8分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y ()与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段请根据图中信息解答下列问题:求这天的温度y与时间x(0x24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于1

7、0时,蔬菜会受到伤害问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?21(8分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.81.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?22(10分)

8、一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由23(12分)如图所示,在中,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分24如图,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(3,0)两点,与y轴交于点D(0,3)(1)求这个抛物线的解析式;(2)如图,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直

9、线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与AOM相似?若存在,求出点P的坐标;若不存在,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:由题意得,解得:故选B2、C【解析】根据反比例函数与一次函数在同一坐标系内的图象可直接解答【详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b的解就是一次函数y=kx+b图象在反

10、比例函数y=的图象的上方的时候x的取值范围,由图象可得:-2x0或x1,故选C【点睛】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答3、D【解析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式【详解】阴影部分的面积相等,即甲的面积=a2b2,乙的面积=(a+b)(ab)即:a2b2=(a+b)(ab)所以验证成立的公式为:a2b2=(a+b)(ab)故选:D【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质4、B【解析】解:根据三视图得到

11、该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=()2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图5、B【解析】当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k1时直线y=k

12、x-2与线段AB有交点,从而能得到正确选项【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k1即k-3或k1所以直线y=kx-2与线段AB有交点,则k的值不可能是-2故选B【点睛】本题考查了一次函数y=kx+b(k0)的性质:当k0时,图象必过第一、三象限,k越大直线越靠近y轴;当k0时,图象必过第二、四象限,k越小直线越靠近y轴6、B【解析】有旋转的性质得到CB

13、=BE=BH,推出C、B、H在一直线上,且AB为ACH的中线,得到SBEI=SABH=SABC,同理:SCDF=SABC,当BAC=90时, SABC的面积最大,SBEI=SCDF=SABC最大,推出SGBI=SABC,于是得到阴影部分面积之和为SABC的3倍,于是得到结论【详解】把IBE绕B顺时针旋转90,使BI与AB重合,E旋转到H的位置,四边形BCDE为正方形,CBE=90,CB=BE=BH,C、B、H在一直线上,且AB为ACH的中线,SBEI=SABH=SABC,同理:SCDF=SABC,当BAC=90时,SABC的面积最大,SBEI=SCDF=SABC最大,ABC=CBG=ABI=9

14、0,GBE=90,SGBI=SABC,所以阴影部分面积之和为SABC的3倍,又AB=2,AC=3,图中阴影部分的最大面积为3 23=9,故选B【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是SABC的3 倍是解题的关键7、A【解析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】x1,x2是关于x的方程x2+bx3=0的两根,x1+x2=b,x1x2=3,x1+x23x1x2=b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a0)有两个实数根x1,

15、x2,那么x1+x2=,x1x2=.8、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】3a2+5a-1=0,3a2+5a=1,5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.9、B【解析】试题解析:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所

16、以D选项错误故选B10、C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=611sin60=故选C【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据DEBC,得到,再代入AC=11-AE,则可求AE长【详解】DEBC,CE=11,解得AE=1故答案为1【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键

17、12、1【解析】如图,作BHAC于H由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tanBOH,可得BH=4a,OH=3a,由题意:21a4a=40,求出a即可解决问题【详解】如图,作BHAC于H四边形ABCD是矩形,OA=OC=OD=OB,设OA=OC=OD=OB=5atanBOH,BH=4a,OH=3a,由题意:21a4a=40,a=1,AC=1故答案为:1【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题13、1【解析】根据题意得x1+x2=2,x1x2=1,所以x

18、1+x2x1x2=2(1)=1故答案为114、1【解析】试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1考点:整体思想15、2或2【解析】本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.【详解】解: 当点在线段的延长线上时,如图3所示.过点作于,是正方形的对角线,,在中,由勾股定理,得:,在和中,,,当点在线段上时,如图4所示.过作于是正方形的对角线,在中,由勾股定理,得:在和中,,,故答案为或【点睛】本题主要考查了勾股定理和三角形全等的证明.16、

19、2【解析】分析:由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,设高为h,则62h=16,解得:h=1它的表面积是:212+262+162=2三、解答题(共8题,共72分)17、6+2【解析】分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案详解:原式=16+1+3=5+1+=6+2点睛:此题主要考查了实数运算,正确化简各数是解题关键18、(1)y=30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【解析】(1) 每星期的销售量等于原来的销售量加

20、上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【详解】(1)y300+30(60x)30x+1(2)设每星期利润为W元,W(x40)(30x+1)30(x55)2+2x55时,W最大值2每件售价定为55元时,每星期的销售利润最大,最大利润2元(3)由题意(x40)(30x+1)6480,解得52x5

21、8,当x52时,销售300+308540,当x58时,销售300+302360,该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【点睛】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.19、(1)3;(2);(3)【解析】(1)把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可【详

22、解】(1)点在直线上,点的“理想值”=-3,故答案为:3.当点在与轴切点时,点的“理想值”最小为0.当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,设点Q(x,y),与x轴切于A,与OQ切于Q,C(,1),tanCOA=,COA=30,OQ、OA是的切线,QOA=2COA=60,=tanQOA=tan60=,点的“理想值”为,故答案为:.(2)设直线与轴、轴的交点分别为点,点,当x=0时,y=3,当y=0时,x+3=0,解得:x=,tanOAB=,如图,作直线当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值作轴于点,的半径为1,如图当与直线相切时,LQ=,相应的

23、圆心满足题意,其横坐标取到最小值作轴于点,则设直线与直线的交点为直线中,k=,点F与Q重合,则的半径为1,由可得,的取值范围是 (3)M(2,m),M点在直线x=2上,LQ取最大值时,=,作直线y=x,与x=2交于点N,当M与ON和x轴同时相切时,半径r最大,根据题意作图如下:M与ON相切于Q,与x轴相切于E,把x=2代入y=x得:y=4,NE=4,OE=2,ON=6,MQN=NEO=90,又ONE=MNQ,即,解得:r=.最大半径为.【点睛】本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论20、(1)y关于x的函数解析式为;(2)

24、恒温系统设定恒温为20C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可详解:(1)设线段AB解析式为y=k1x+b(k0)线段AB过点(0,10),(2,14)代入得解得AB解析式为:y=2x+10(0x5)B在线段AB上当x=5时,y=20B坐标为(5,20)线段BC的解析式为:y=20(5x10)设双曲线CD解析式为:y=(k20)C(10,20)k2=200双曲线CD解析式为:y=(10x24)y关于x的函数解析式为:(2)由(1)恒温系统设定恒温为20C(3)把y=10代入y=中

25、,解得,x=2020-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式解答时应注意临界点的应用21、(1)该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套;(2)A种品牌的教学设备购进数量至多减少1套 【解析】(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据花11万元购进两种设备销售后可获得利润12万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据总价=

26、单价数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m的一元一次不等式,解之取其中最大的整数即可得出结论【详解】解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据题意得:解得:答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据题意得:1.5(20m)+1.2(30+1.5m)18,解得:m,m为整数,m1答:A种品牌的教学设备购进数量至多减少1套【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准

27、等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式22、(1)36(2)不公平【解析】(1)根据题意列表即可;(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论【详解】(1)列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可

28、能的结果,(2)这个游戏对他们不公平,理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,而P(两次掷的骰子的点数相同) P(两次掷的骰子的点数的和是6)= 不公平【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平23、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC

29、于点P,EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90,3B=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键24、【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得2分即所求抛物线的解析式为:3分 【小题2】 如图,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HFHI

30、设过A、E两点的一次函数解析式为:ykxb(k0),点E在抛物线上且点E的横坐标为-2,将x-2,代入抛物线,得点E坐标为(-2,3)4分又抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、D(0,3),所以顶点C(-1,4)抛物线的对称轴直线PQ为:直线x-1, 中国教#&育出%版网点D与点E关于PQ对称,GDGE 分别将点A(1,0)、点E(-2,3)代入ykxb,得:解得:过A、E两点的一次函数解析式为:y-x1 当x0时,y1 点F坐标为(0,1)5分 =2又点F与点I关于x轴对称, 点I坐标为(0,-1) 又要使四边形DFHG的周长最小,由于DF是一个定值,只要使DGGH

31、HI最小即可 6分由图形的对称性和、,可知, DGGHHFEGGHHI只有当EI为一条直线时,EGGHHI最小设过E(-2,3)、I(0,-1)两点的函数解析式为:,分别将点E(-2,3)、点I(0,-1)代入,得:解得:过I、E两点的一次函数解析式为:y-2x-1当x-1时,y1;当y0时,x-;点G坐标为(-1,1),点H坐标为(-,0)四边形DFHG的周长最小为:DFDGGHHFDFEI由和,可知:DFEI四边形DFHG的周长最小为. 7分 【小题3】 如图,由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:解得:,过A、C两点的

32、一次函数解析式为:y-2x+2,当x0时,y2,即M的坐标为(0,2);由图可知,AOM为直角三角形,且, 8分要使,AOM与PCM相似,只要使PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且CPM不可能为90时,因此可分两种情况讨论; 9分当CMP=90时,CM=,若则,可求的P(-4,0),则CP=5,即P(-4,0)成立,若由图可判断不成立;10分当PCM=90时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立.11分综上所述,存在以P、C、M为顶点的三角形与AOM相似,点P的坐标为(-4,0)12分 【解析】(1)直接利用三点式求出

33、二次函数的解析式;(2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DGGHHI最小即可, 由图形的对称性和,可知,HFHI,GDGE,DGGHHFEGGHHI只有当EI为一条直线时,EGGHHI最小,即,DFEI即边形DFHG的周长最小为.(3)要使AOM与PCM相似,只要使PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且CPM不可能为90时,因此可分两种情况讨论,当CMP=90时,CM=,若则,可求的P(-4,0),则CP=5,即P(-4,0)成立,若由图可判断不成立;当PCM=90时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与AOM相似的P的坐标(-4,0)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁