2023届湖南省娄底娄星区四校联考中考数学四模试卷含解析.doc

上传人:lil****205 文档编号:87840896 上传时间:2023-04-18 格式:DOC 页数:20 大小:907.50KB
返回 下载 相关 举报
2023届湖南省娄底娄星区四校联考中考数学四模试卷含解析.doc_第1页
第1页 / 共20页
2023届湖南省娄底娄星区四校联考中考数学四模试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2023届湖南省娄底娄星区四校联考中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖南省娄底娄星区四校联考中考数学四模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)16的绝对值是( )A6B6CD2如果零上2记作2,那么零下3记作( )A3B2C3D23若ab0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()ABCD4如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点

2、D,与BC边交于点E,连结DE,将BDE沿DE翻折至BDE处,点B恰好落在正比例函数y=kx图象上,则k的值是()ABCD5如图,矩形是由三个全等矩形拼成的,与,分别交于点,设,的面积依次为,若,则的值为( )A6B8C10D126如图,点ABC在O上,OABC,OAC=19,则AOB的大小为()A19B29C38D527若一个正多边形的每个内角为150,则这个正多边形的边数是()A12B11C10D981桌面上放置的几何体中,主视图与左视图可能不同的是( )A圆柱 B正方体 C球 D直立圆锥9如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是

3、( )Ax-2或x2Bx-2或0x2C-2x0或0x2D-2x0或x210将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,BD和CE是ABC的两条角平分线若A52,则12的度数为_12如图,在矩形ABCD中,AB4,BC5,点E是边CD的中点,将ADE沿AE折叠后得到AFE延长AF交边BC于点G,则CG为_13老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如2x22x+1x2+5x3:则所捂住的多项式是_14如图,从甲楼底部A处测得乙楼顶部C处的仰角是

4、30,从甲楼顶部B处测得乙楼底部D处的俯角是45,已知甲楼的高AB是120m,则乙楼的高CD是_m(结果保留根号)15如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_16关于的一元二次方程有两个相等的实数根,则的值等于_三、解答题(共8题,共72分)17(8分)如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,求证:AB2=BDBC18(8分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上(I)AC的长等于_(II)若A

5、C边与网格线的交点为P,请找出两条过点P的直线来三等分ABC的面积请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_(不要求证明)19(8分)如图,已知抛物线经过点A(1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与BOD相

6、似?若存在,求出点Q的坐标;若不存在,请说明理由20(8分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施经调査发现,每件商品每降价1元,商场平均每天可多售出2件若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加_件,每件商品,盈利_元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?21(8分)如图1,已知扇形MON的半径为,MON=90,点B在弧MN上移动,联结BM,作ODBM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x

7、,COM的正切值为y.(1)如图2,当ABOM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当OAC为等腰三角形时,求x的值.22(10分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,AOM的面积为2求反比例函数的解析式;设点B的坐标为(t,0),其中t2若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值23(12分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18,教学楼底部B的俯角为20,量得实验楼与教学楼之间的距离AB=30m(1)求BCD的度数(2)求教学楼的高BD

8、(结果精确到0.1m,参考数据:tan200.36,tan180.32)24在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点求抛物线的表达式;若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:1是正数,绝对值是它本身1故选A考点:绝对值2、A【解析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,如果零上2记作2,那么零下3记作3.故选A.3、D【解析】根据ab0及正比例函数与反比例函数图象的特点,可以从a0,b0和a0

9、,b0两方面分类讨论得出答案【详解】解:ab0,分两种情况:(1)当a0,b0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a0,b0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题4、B【解析】根据矩形的性质得到,CBx轴,ABy轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB,交ED于F,过B作BGBC于G,根据轴对称的性质得到BF=BF,BBED求得BB,设EG=x,根据勾股定理即可得到结论【详解

10、】解:矩形OABC,CBx轴,ABy轴点B坐标为(6,1),D的横坐标为6,E的纵坐标为1D,E在反比例函数的图象上,D(6,1),E(,1),BE=6=,BD=11=3,ED=连接BB,交ED于F,过B作BGBC于GB,B关于ED对称,BF=BF,BBED,BFED=BEBD,即BF=3,BF=,BB=设EG=x,则BG=xBB2BG2=BG2=EB2GE2,x=,EG=,CG=,BG=,B(,),k=故选B【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键5、B【解析】由条件可以得出BPQDKMCNH,可以求出BPQ与DKM的相似比为,BPQ与CN

11、H相似比为,由相似三角形的性质,就可以求出,从而可以求出【详解】矩形AEHC是由三个全等矩形拼成的,AB=BD=CD,AEBFDGCH,BQP=DMK=CHN,ABQADM,ABQACH,EF=FG= BD=CD,ACEH,四边形BEFD、四边形DFGC是平行四边形, BEDFCG,BPQ=DKM=CNH, 又BQP=DMK=CHN,BPQDKM,BPQCNH,即,即,解得:,故选:B【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键6、C【解析】由AOBC,得到ACB=OAC=19,根据圆周角定理得到AOB

12、=2ACB=38.【详解】AOBC,ACB=OAC,而OAC=19,ACB=19,AOB=2ACB=38故选:C【点睛】本题考查了圆周角定理与平行线的性质解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.7、A【解析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180150=30,再根据多边形外角和为360度即可求出边数【详解】一个正多边形的每个内角为150,这个正多边形的每个外角=180150=30,这个正多边形的边数=1故选:A【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为36

13、0度以及正多边形的性质8、B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B考点:简单几何体的三视图9、D【解析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论【详解】解:反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为1,点B的横坐标为-1,由函数图象可知,当-1x0或x1时函数y1=k1x的图象在的上方,当y1y1时,x的取值范围是-1x0或x1故选:D【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1y1时x的取

14、值范围是解答此题的关键10、A【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、64【解析】解:A=52,ABC+ACB=128BD和CE是ABC的两条角平分线,1=ABC,2=ACB,1+2=(ABC+ACB)=64故答案为64点睛:本题考

15、查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180是解题的关键12、【解析】如图,作辅助线,首先证明EFGECG,得到FGCG(设为x ),FEGCEG;同理可证AFAD5,FEADEA,进而证明AEG为直角三角形,运用相似三角形的性质即可解决问题【详解】连接EG;四边形ABCD为矩形,DC90,DCAB4;由题意得:EFDEEC2,EFGD90;在RtEFG与RtECG中,RtEFGRtECG(HL),FGCG(设为x ),FEGCEG;同理可证:AFAD5,FEADEA,AEG18090,而EFAG,可得EFGAFE, 225x,x,CG,故答案为:.【点睛】此题考查矩形的

16、性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求13、x2+7x-4【解析】设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A,则根据题目信息可得 他所捂的多项式为故答案为【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;14、40【解析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案【详解】解:由题意可得:BDA=45,则AB=AD=120m,又CAD=30,在RtADC中,tanCD

17、A=tan30=,解得:CD=40(m),故答案为40【点睛】此题主要考查了解直角三角形的应用,正确得出tanCDA=tan30=是解题关键15、 【解析】由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明DGFDAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可【详解】四边形ABCD、CEFG均为正方形,CD=AD=3,CG=CE=5,DG=2,在RtDGF中, DF=,FDG+GDI=90,GDI+IDA=90,FDG=IDA又DAI=DGF,DGFDAI,即,解得:DI=,矩形DFHI的面积是=DFDI=,故答案为:【点睛】本题考查了正方形的性质,

18、矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键16、【解析】分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.详解:由题意得:= , ,即a(a-1)=1, a-1=,故答案为-3.点睛:本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac:当0, 方程有两个不相等的实数根;当0, 方程没有实数根;当=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.三、解答题(共8题,共72分)17、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,交CB、CA于E、F;以A为圆心,

19、CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质18、 作abcd,可得交点P与P 【解析】(1)根据勾股定理计算即可;(2)利用平行线等分线段定理即可解决问题.【详解】(I)A

20、C=,故答案为:;(II)如图直线l1,直线l2即为所求;理由:abcd,且a与b,b与c,c与d之间的距离相等,CP=PP=PA,SBCP=SABP=SABC故答案为作abcd,可得交点P与P【点睛】本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型19、(1)y=x2+x+2;(2)m=1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(1,0)时,以点B、Q、M为顶点的三角形与BOD相似【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+

21、2)、M(m,m-2),由QMDF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知ODB=QMB,故分DOB=MBQ=90,利用DOBMBQ得,再证MBQBPQ得,即,解之即可得此时m的值;BQM=90,此时点Q与点A重合,BODBQM,易得点Q坐标详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=-,则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;(2)由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:

22、,解得:,直线BD解析式为y=x-2,QMx轴,P(m,0),Q(m,-m2+m+2)、M(m,m-2),则QM=-m2+m+2-(m-2)=-m2+m+4,F(0,)、D(0,-2),DF=,QMDF,当-m2+m+4=时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:QMDF,ODB=QMB,分以下两种情况:当DOB=MBQ=90时,DOBMBQ,则,MBQ=90,MBP+PBQ=90,MPB=BPQ=90,MBP+BMP=90,BMP=PBQ,MBQBPQ,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重

23、合,不能构成三角形,舍去,m=3,点Q的坐标为(3,2);当BQM=90时,此时点Q与点A重合,BODBQM,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与BOD相似点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用【详解】请在此输入详解!20、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50x(3)每件商品降价1元时,商场日盈利可达到2000元【解析】(1)根据“盈利=单件利润销售数量”即可得出结论;(2)根

24、据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值【详解】(1)当天盈利:(50-3)(30+23)=1692(元)答:若某天该商品每件降价3元,当天可获利1692元(2)每件商品每降价1元,商场平均每天可多售出2件,设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元故答案为2x;50-x(3)根据题意,得:(50-x)(30+2x)=2000,整理,

25、得:x2-35x+10=0,解得:x1=10,x2=1,商城要尽快减少库存,x=1答:每件商品降价1元时,商场日盈利可达到2000元【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式)21、(1)证明见解析;(2) .();(3) .【解析】分析:(1)先判断出ABM=DOM,进而判断出OACBAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论详解:(1)ODBM,ABOM,ODM=BAM=90ABM+M=DOM+M,ABM=DOMOAC=BAM,OC=

26、BM,OACBAM, AC=AM(2)如图2,过点D作DEAB,交OM于点EOB=OM,ODBM,BD=DMDEAB,AE=EMOM=,AE=DEAB, ()(3)(i) 当OA=OC时在RtODM中,解得,或(舍)(ii)当AO=AC时,则AOC=ACOACOCOB,COB=AOC,ACOAOC,此种情况不存在()当CO=CA时,则COA=CAO=CAOM,M=90,90,45,BOA=290BOA90,此种情况不存在即:当OAC为等腰三角形时,x的值为点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键

27、22、(2)(2)7或2.【解析】试题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值试题解析:(2)AOM的面

28、积为2,|k|=2,而k0,k=6,反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,把x=2代入y=得y=6,M点坐标为(2,6),AB=AM=6,t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t-2,C点坐标为(t,t-2),t(t-2)=6,整理为t2-t-6=0,解得t2=2,t2=-2(舍去),t=2,以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2考点:反比例函数综合题23、(1)38;(2)20.4m【解析】(1)过点C作CE与BD垂

29、直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高【详解】(1)过点C作CEBD,则有DCE=18,BCE=20,BCD=DCE+BCE=18+20=38;(2)由题意得:CE=AB=30m,在RtCBE中,BE=CEtan2010.80m,在RtCDE中,DE=CDtan189.60m,教学楼的高BD=BE+DE=10.80+9.6020.4m,则教学楼的高约为20.4m【点睛】本题考查了解直角三角形的应用仰角俯角问题,正确添加辅助线构建直角三角形、熟

30、练掌握和灵活运用相关知识是解题的关键.24、为;点Q的坐标为或【解析】依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标【详解】抛物线顶点A的横坐标是,即,解得将代入得:,抛物线的解析式为抛物线向下平移了4个单位平移后抛物线的解析式为,点O在PQ的垂直平分线上又轴,点Q与点P关于x轴对称点Q的纵坐标为将代入得:,解得:或点Q的坐标为或【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁