《上海市五十四中2023年高考压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市五十四中2023年高考压轴卷数学试卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1若实数、满足,则的最小值是( )ABCD2如图,是圆的一条直径,为半圆弧的两个三等分点,则( )ABCD3集合的子集的个数是( )A2B3C4D84已知集合,集合,则AB或CD5某装饰公司制作一种扇形板状装饰品,其圆心角为120,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米6已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD7的展开式中含的项的系数为( )AB60C7
3、0D808已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,且,则该双曲线的渐近线方程为( )ABCD9已知曲线且过定点,若且,则的最小值为( ).AB9C5D10双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为( )AB3CD211已知正四面体的棱长为,是该正四面体外接球球心,且,则( )ABCD12已知向量,则( )ABC()D( )二、填空题:本题共4小题,每小题5分,共20分。13若函数与函数,在公共点处有共同的切线,则实数的值为_14已知点是抛物线的焦点,是该抛物线上的两点,若,则线段中点的纵坐标为_15如图,、分
4、别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,则双曲线的离心率是_.16已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.18(12分)如图,在四棱锥中,底面为等腰梯形,为等腰直角三角形,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.19(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.20(12分
5、)已知函数.(1)当时.求函数在处的切线方程;定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.21(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.22(10分)已知函数,.(1)当时,讨论函数的零点个数;(2)若在上单调递增,且求c的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行
6、域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题2、B【解析】连接、,即可得到,再根据平面向量的数量积及运算律计算可得;【详解】解:连接、,是半圆弧的两个三等分点, ,且,所以四边形为棱形,故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.3、D【解析】先确定集合中元素的个数,再得子集个数【详解】由题意,有三个元素,其子集有8个故选:D【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个4、C【解析】由可得
7、,解得或,所以或,又,所以,故选C5、B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.6、B【解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛
8、】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.7、B【解析】展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.8、D【解析】根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线
9、中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.9、A【解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.10、A【解析】设,直线的方程为,联立方程得到,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.11、
10、A【解析】如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,在直角三角形中,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.12、D【解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】向量(1,2),(3,1),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行
11、,故排除C;()2+20,故 (),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】函数的定义域为,求出导函数,利用曲线与曲线公共点为由于在公共点处有共同的切线,解得,联立解得的值【详解】解:函数的定义域为,设曲线与曲线公共点为,由于在公共点处有共同的切线,解得,由,可得联立,解得故答案为:【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题14、2【解析】运用抛物线的定义将抛物线上的点到焦点距离等于到准线距离,然后求解结果.【详解】抛物线的标准方
12、程为:,则抛物线的准线方程为,设,则,所以,则线段中点的纵坐标为.故答案为:【点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.15、【解析】根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.【详解】,为中点,垂直平分,即,即.故答案为:【点睛】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题.16、【解析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知,由
13、中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即
14、可求得二面角的余弦值.【详解】(1)证明:设,连接,如下图所示:侧面为菱形,且为及的中点, 又,则为直角三角形,又,即,而为平面内的两条相交直线,平面.(2)平面,平面,即,从而两两互相垂直.以为坐标原点,的方向为轴正方向,为单位长度,建立如图的空间直角坐标系,为等边三角形, ,设平面的法向量为,则,即,可取,设平面的法向量为,则.同理可取,由图示可知二面角为锐二面角,二面角的余弦值为.【点睛】本题考查了线面垂直的判定方法,利用空间向量方法求二面角夹角的余弦值,注意建系时先证明三条两两垂直的直线,属于中档题.18、(1)证明见解析;(2)【解析】(1)取的中点,连接,易得,进而可证明四边形为平
15、行四边形,即,从而可证明平面;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系,进而求出平面的法向量,及平面的法向量为,由,可求得平面与平面所成的二面角的正弦值.【详解】(1)证明:如图1,取的中点,连接.,且,四边形为平行四边形,.又平面,平面,平面.(2)如图2,取中点,中点,连接.,平面平面,平面平面,平面,平面,两两垂直.以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系.由,可得,在等腰梯形中,易知,.则,设平面的法向量为,则,取,得.设平面的法向量为,则,取,得.因为,所以,所以平面与平面
16、所成的二面角的正弦值为.【点睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.19、(1)或;(2)见解析【解析】(1)根据,利用零点分段法解不等式,或作出函数的图像,利用函数的图像解不等式;(2)由(1)作出的函数图像求出的最小值为,可知,代入中,然后给等式两边同乘以,再将写成后,化简变形,再用均值不等式可证明.【详解】(1)解法一:1时,即,解得;2时,即,解得;3时,即,解得.综上可得,不等式的解集为或.解法二:由作出图象如下:由图象可得不等式的解集为或.(2)由所以在上单调递减,在上单调递增,所以,正实数满足,则,即,(当且仅当即时取等号)故
17、,得证.【点睛】此题考查了绝对值不等式的解法,绝对值不等式的性质和均值不等式的运用,考查了分类讨论思想和转化思想,属于中档题.20、(1);8079;(2).【解析】(1)时,利用导数的几何意义能求出函数在处的切线方程由,得,由此能求出的值(2)根据若对任意给定的,在区间,上总存在两个不同的,使得成立,得到函数在区间,上不单调,从而求得的取值范围【详解】(1),所以切线方程为.,. 令,则,. 因为, 所以, 由+得,所以. 所以.(2),当时,函数单调递增;当时,函数单调递减,所以,函数在上的值域为. 因为, ,故,此时,当 变化时、的变化情况如下:0+单调减最小值单调增,对任意给定的,在区
18、间上总存在两个不同的, 使得成立,当且仅当满足下列条件,即令,当时,函数单调递增,当时,函数单调递减所以,对任意,有,即对任意恒成立.由式解得:综合可知,当时,对任意给定的,在上总存在两个不同的,使成立.【点睛】本题考查了导数的几何意义、应用导数研究函数的单调性、求函数最值问题,会利用导函数的正负确定函数的单调性,会根据函数的增减性求出闭区间上函数的最值,掌握不等式恒成立时所满足的条件不等式恒成立常转化为函数最值问题解决21、(1);(2).【解析】(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果; (2).作出函数的图象, 当直线与函数的图象有三个公共点时,方
19、程有三个解,由图可得结果.【详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想22、(1)见解析(2)2【解析】(1)将代入可得,令,则,设,则转化问题为与的交点问题,利用导函数判断的图象,即可求解;(2)由题可
20、得在上恒成立,设,利用导函数可得,则,即,再设,利用导函数求得的最小值,则,进而求解.【详解】(1)当时,定义域为,由可得,令,则,由,得;由,得,所以在上单调递增,在上单调递减,则的最大值为,且当时,;当时,由此作出函数的大致图象,如图所示.由图可知,当时,直线和函数的图象有两个交点,即函数有两个零点;当或,即或时,直线和函数的图象有一个交点,即函数有一个零点;当即时,直线与函数的象没有交点,即函数无零点.(2)因为在上单调递增,即在上恒成立,设,则,若,则,则在上单调递减,显然,在上不恒成立;若,则,在上单调递减,当时,故,单调递减,不符合题意;若,当时,单调递减,当时,单调递增,所以,由,得,设,则,当时,单调递减;当时,单调递增,所以,所以,又,所以,即c的最大值为2.【点睛】本题考查利用导函数研究函数的零点问题,考查利用导函数求最值,考查运算能力与分类讨论思想.