2023届河南省周口市鹿邑县达标名校中考押题数学预测卷含解析.doc

上传人:lil****205 文档编号:87840722 上传时间:2023-04-18 格式:DOC 页数:21 大小:962KB
返回 下载 相关 举报
2023届河南省周口市鹿邑县达标名校中考押题数学预测卷含解析.doc_第1页
第1页 / 共21页
2023届河南省周口市鹿邑县达标名校中考押题数学预测卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2023届河南省周口市鹿邑县达标名校中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届河南省周口市鹿邑县达标名校中考押题数学预测卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点

2、G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为()A正比例函数y=kx(k为常数,k0,x0)B一次函数y=kx+b(k,b为常数,kb0,x0)C反比例函数y=(k为常数,k0,x0)D二次函数y=ax2+bx+c(a,b,c为常数,a0,x0)2如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A3B4C4D623设x1,x2是一元二次方程x22x50的两根,则x12+x22

3、的值为()A6B8C14D164如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A5:2B3:2C3:1D2:15二元一次方程组的解为()ABCD6根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A9B7C9D77如图,交于点,平分,交于. 若,则的度数为( ) A35oB45oC55oD65o8某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A50和48B50和47C48和48D48和439下列汽车标志中,

4、不是轴对称图形的是( )ABCD10等腰三角形的两边长分别为5和11,则它的周长为( )A21B21或27C27D2511如图是本地区一种产品30天的销售图象,图是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润日销售量一件产品的销售利润,下列结论错误的是()A第24天的销售量为200件B第10天销售一件产品的利润是15元C第12天与第30天这两天的日销售利润相等D第27天的日销售利润是875元12抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x21012y04664从上表可知

5、,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在对称轴左侧部分是上升的二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,P与x轴交于O,A两点,点A的坐标为(6,0),P的半径为,则点P的坐标为_.14如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当ABM是等腰三角形时,M点的坐标为_15计算3结果等于_16如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,则_1721世纪纳米技术将被广泛应用纳

6、米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_米18如图,已知,第一象限内的点A在反比例函数y的图象上,第四象限内的点B在反比例函数y的图象上且OAOB,OAB60,则k的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率20(6分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上

7、,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上(1)求抛物线的解析式;(2)当PO+PC的值最小时,求点P的坐标;(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由21(6分)化简(),并说明原代数式的值能否等于-122(8分)在ABC中,已知AB=AC,BAC=90,E为边AC上一点,连接BE(1)如图1,若ABE=15,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+F

8、G23(8分)先化简,再求值:2(m1)2+3(2m+1),其中m是方程2x2+2x1=0的根24(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF已知BC=1(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,PFM的形状是否发生变化?请说明理由;求PFM的周长的取值范围25(10分)如图,AC=DC,BC=EC,ACD=BCE求证:A=D26(12分)如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且D

9、E=EF求证:C=90;当BC=3,sinA=时,求AF的长27(12分)如图,在ABC中,AB=AC,以AB为直径的O分别交BC,AC于点D,E,DGAC于点G,交AB的延长线于点F(1)求证:直线FG是O的切线;(2)若AC=10,cosA=,求CG的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角

10、形的对应角相等得到A=B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由FQO与OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到QOE=QOF=A=B,再由切线长定理得到OD与OC分别为EOG与FOG的平分线,得到DOC为EOF的一半,即DOC=A=B,又GCO=FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y

11、代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项【详解】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,AE,BF为圆O的切线,OEAE,OFFB,AEO=BFO=90,在RtAEO和RtBFO中,RtAEORtBFO(HL),A=B,QAB为等腰三角形,又O为AB的中点,即AO=BO,QOAB,QOB=QFO=90,又OQF=BQO,QOFQBO,B=QOF,同理可以得到A=QOE,QOF=QOE,根据切线长定理得:OD平分EOG,OC平分GOF,DOC=EOF=A=B,又GCO=FCO,DOCOBC,同理可以得到DOCDAO,

12、DAOOBC,ADBC=AOOB=AB2,即xy=AB2为定值,设k=AB2,得到y=,则y与x满足的函数关系式为反比例函数y=(k为常数,k0,x0)故选C【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识2、B【解析】分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE的长,最后求得DE的长即可详解:如图,当点E旋转至y轴上时DE最小;ABC是等边三角形,D为BC的中点,ADBCAB=BC=2AD=ABsinB=,正六边形的边长等于其半径,正六边形的边长

13、为2,OE=OE=2点A的坐标为(0,6)OA=6DE=OA-AD-OE=4-故选B点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形3、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形x12+x22得到(x1+x2)2-2x1x2,然后利用代入计算即可【详解】一元二次方程x2-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1x2

14、= 4、C【解析】求出正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积,阴影部分的面积,空白部分与阴影部分面积之比是:1,故选C【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型5、C【解析】利用加减消元法解这个二元一次方程组.【详解】解:-2,得:y=-2,将y=-2代入,得:2x-2=4,解得,x=3,所以原方程组的解是.故选C.【点睛】本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.6、C【解析】先求出x=7时y的值,再将x=4、y=

15、-1代入y=2x+b可得答案【详解】当x=7时,y=6-7=-1,当x=4时,y=24+b=-1,解得:b=-9,故选C【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法7、D【解析】分析:根据平行线的性质求得BEC的度数,再由角平分线的性质即可求得CFE 的度数.详解: 又EF平分BEC,.故选D.点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.8、A【解析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故

16、选:A【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.9、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合10、C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+511,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长解:当腰取5,则底边为11,但5+511,不符合三角形三边的关系,所以这种情况不存在;当腰取1

17、1,则底边为5,则三角形的周长=11+11+5=1故选C考点:等腰三角形的性质;三角形三边关系11、C【解析】试题解析:A、根据图可得第24天的销售量为200件,故正确;B、设当0t20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,z=-x+25,当x=10时,y=-10+25=15,故正确;C、当0t24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,y=t+100,当t=12时,y=150,z=-12+25=13,第12天的日

18、销售利润为;15013=1950(元),第30天的日销售利润为;1505=750(元),7501950,故C错误;D、第30天的日销售利润为;1505=750(元),故正确故选C12、C【解析】当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、(3,2)【解析】过点P作PDx轴于点D,连接OP,先由

19、垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案【详解】过点P作PDx轴于点D,连接OP, A(6,0),PDOA, OD=OA=3,在RtOPD中 OP= OD=3, PD=2 P(3,2) . 故答案为(3,2)【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键14、(4,6),(82,6),(2,6)【解析】分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标【详解】解:当M为顶点时,AB长为底=8,M在DC中点上, 所以M的坐标为(4, 6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理

20、可知ME=2所以M的坐标为(82,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF=2所以M的坐标为(2,6);综上所述,M的坐标为(4,6),(82,6),(2,6);故答案为:(4,6),(82,6),(2,6)【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.15、1【解析】根据二次根式的乘法法则进行计算即可.【详解】 故答案为:1【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.16、【解析】试题分析:四边形ABCD与四边形EFGH位似,位似中心点是点O,则 故答案为点睛:本题考查的是位似变换的

21、性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键17、1.2101【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:12纳米120.000000001米1.2101米故答案为1.2101【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定18、-6【解析】如图,作ACx轴,BDx轴,OAOB,AOB=90,OAC+AOC=90,AOC+BOD=90,OAC=BO

22、D,ACOODB,OAB=60,设A(x,),BD=OC=x,OD=AC=,B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)P=;(2)P=.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=; (2)甲、乙、丙三名学生A

23、B两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比20、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.【解析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)D与P重合时有最小值,求出点D的坐标即可;(3)存在,分

24、别根据AC为对角线,AC为边,两种情况,分别求解即可.【详解】(1)在矩形OABC中,OA=4,OC=3,A(4,0),C(0,3),抛物线经过O、A两点,且顶点在BC边上,抛物线顶点坐标为(2,3),可设抛物线解析式为y=a(x2)2+3,把A点坐标代入可得0=a(42)2+3,解得a=, 抛物线解析式为y=(x2)2+3,即y=x2+3x;(2)点P在抛物线对称轴上,PA=PO,PO+PC= PA+PC当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC AC;当点P与点D重合时,PO+PC的值最小,设直线AC的解析式为y=kx+b,根据题意,得解得直线AC的解析式为,

25、当x=2时,当PO+PC的值最小时,点P的坐标为(2,);(3)存在AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x6时,此时Q(6,9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,6);当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为2,当x2时,此时Q(2,9),则点C(0,

26、3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,12);综上所述,P(2,0),Q(2,3)或P(2,6),Q(6,9)或P(2,12),Q(2,9)【点睛】二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识21、见解析【解析】先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为1,则=1,截至求得x的值,再根据分式有意义的条件即可作出判断【详解】原式=,若原代数式的值为1,则=1,解得:x=0,因为x=0时,原式没有意义,所以原代数式的值不能等于1【点睛】本题考查了

27、分式的化简求值,熟练掌握运算法则是解题的关键22、(1) (2)证明见解析【解析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题(2)如图2中,作CQAC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15,AME=MBE+MEB=30,设 AE=x,则 ME=BM=2x,AM=x,

28、AB2+AE2=BE2,x= (负根已经舍弃),AB=AC=(2+ ) ,BC= AB= +1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90,FGCD,AEB=CMF,GEM=GME,EG=MG,ABE=CAQ,AB=AC,BAE=ACQ=90,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质

29、、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题23、2m2+2m+5;1;【解析】先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可【详解】解:原式=2(m22m+1)+1m+3,=2m24m+2+1m+3=2m2+2m+5,m是方程2x2+2x1=0的根,2m2+2m1=0,即2m2+2m=1,原式=2m2+2m+5=1【点睛】此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.24、(1)CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由见解析;PFM的周长满足:2+2

30、(1+)y1+1【解析】(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)PFM的形状是等腰直角三角形,想办法证明POFMOC,可得PFO=MCO=15,延长即可解决问题;设FM=y,由勾股定理可知:PF=PM=y,可得PFM的周长=(1+)y,由2y1,可得结论【详解】(1)M为AC的中点,CM=AC=BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,FM2=CF2+CM2,即(1x)2=x2+22,解得,x=,即CF=;(2)PFM的形状是等腰直角三角形,不会发生

31、变化,理由如下:由折叠的性质可知,PMF=B=15,CD是中垂线,ACD=DCF=15,MPC=OPM,POMPMC,=,=,EMC=AEM+A=CMF+EMF,AEM=CMF,DPE+AEM=90,CMF+MFC=90,DPE=MPC,DPE=MFC,MPC=MFC,PCM=OCF=15,MPCOFC, ,POF=MOC,POFMOC,PFO=MCO=15,PFM是等腰直角三角形;PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=y,PFM的周长=(1+)y,2y1,PFM的周长满足:2+2(1+)y1+1【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似

32、三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型25、证明见试题解析【解析】试题分析:首先根据ACD=BCE得出ACB=DCE,结合已知条件利用SAS判定ABC和DEC全等,从而得出答案.试题解析:ACD=BCE ACB=DCE 又AC=DC BC=EC ABCDEC A=D考点:三角形全等的证明26、(1)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OEBC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接O

33、E,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBCACC=90(2)在ABC,C=90,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识27、(3)证明见试题解析;(3)3【解析】试题分析:(3)先得出ODAC,有ODG=DGC,再由DGAC,得到DGC=90,ODG=90,得出ODFG,即可得出直线FG是O的切线(3)先得出ODFAGF,再由cosA=,得出co

34、sDOF=;然后求出OF、AF的值,即可求出AG、CG的值试题解析:(3)如图3,连接OD,AB=AC,C=ABC,OD=OB,ABC=ODB,ODB=C,ODAC,ODG=DGC,DGAC,DGC=90,ODG=90,ODFG,OD是O的半径,直线FG是O的切线;(3)如图3,AB=AC=30,AB是O的直径,OA=OD=303=5,由(3),可得:ODFG,ODAC,ODF=90,DOF=A,在ODF和AGF中,DOF=A,F=F,ODFAGF,cosA=,cosDOF=,OF=,AF=AO+OF=,解得AG=7,CG=ACAG=307=3,即CG的长是3考点:3切线的判定;3相似三角形的判定与性质;3综合题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁