《2023届甘肃省古浪县重点名校毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届甘肃省古浪县重点名校毕业升学考试模拟卷数学卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1将20011999变形正确的是()A200021B20002+1C20002+22000+1D2000222000+12下列算式的运算结果正确的是()Am3m2=m6 Bm5m3=m2(m
2、0)C(m2)3=m5 Dm4m2=m23某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A0.286105 B2.86105 C28.6103 D2.861044计算 的结果为()A1BxCD5如图,在ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C)若线段AD长为正整数,则点D的个数共有( )A5个B4个C3个D2个6为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()A11015B0.11014C0.011013D0.
3、0110127对于反比例函数y=(k0),下列所给的四个结论中,正确的是()A若点(3,6)在其图象上,则(3,6)也在其图象上B当k0时,y随x的增大而减小C过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD反比例函数的图象关于直线y=x成轴对称8如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CDx轴,垂足为D,且OA=AD,则以下结论:;当0x3时,;如图,当x=3时,EF=;当x0时,随x的增大而增大,随x的增大而减小其中正确结论的个数是( )A1B2C3D49观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为A
4、75B89C103D13910如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )A-2B2C-4D411如图,已知ABCD,DEAC,垂足为E,A120,则D的度数为()A30B60C50D4012如图,l1l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=()A5:2B4:3C2:1D3:2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,矩形中,将矩形沿折叠,点落在点处.则重叠部分的面积为_.14将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_15将绕点逆时针旋转到使、在同一直线上,若,则图中阴影部分
5、面积为_.16分式有意义时,x的取值范围是_17对角线互相平分且相等的四边形是()A菱形B矩形C正方形D等腰梯形18如图,四边形ABCD是菱形,A60,AB2,扇形EBF的半径为2,圆心角为60,则图中阴影部分的面积是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知一次函数y=x+m的图象与x轴交于点A(4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另
6、一交点为D,已知P为x轴上的一个动点,且PBD是以BD为直角边的直角三角形,求点P的坐标20(6分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于m,则称m为这个函数的反向值在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离特别地,当函数只有一个反向值时,其反向距离n为零例如,图中的函数有4,1两个反向值,其反向距离n等于1(1)分别判断函数yx+1,y,yx2有没有反向值?如果有,直接写出其反向距离;(2)对于函数yx2b2x,若其反向距离为零,求b的值;若1b3,求其反向距离n的取值范围;(3)若函数y请直接写出这个函数的反向距离的所
7、有可能值,并写出相应m的取值范围21(6分)解分式方程:22(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整(1)按如下分数段整理、描述这两组数据:成绩x学生70x7475x7980x8485x8990x9495x100甲_乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲_83.7_8613.21乙2483.782_46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选_(填“甲”或“乙),理由为_23(8分)先化简,再求值:x(x+1
8、)(x+1)(x1),其中x=124(10分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN25(10分)如图,在平面直角坐标系中,O为坐标原点,AOB是等腰直角三角形,AOB=90,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.26(12分)已知关于x的方程x1+(1k1)x+k11=0有两个实数根x1,x1求实数k的取值范围; 若x1,x1满足x1
9、1+x11=16+x1x1,求实数k的值27(12分)(1)如图1,在矩形ABCD中,AB2,BC5,MPN90,且MPN的直角顶点在BC边上,BP1特殊情形:若MP过点A,NP过点D,则 类比探究:如图2,将MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由(2)拓展探究:在RtABC中,ABC90,ABBC2,ADAB,A的半径为1,点E是A上一动点,CFCE交AD于点F请直接写出当AEB为直角三角形时的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题
10、给出的四个选项中,只有一项是符合题目要求的)1、A【解析】原式变形后,利用平方差公式计算即可得出答案【详解】解:原式=(2000+1)(2000-1)=20002-1,故选A【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键2、B【解析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案【详解】A、m3m2=m5,故此选项错误;B、m5m3=m2(m0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题
11、关键3、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】28600=2.861故选D【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键4、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则5、C【解析】试题分析:过A作AEBC于E,AB=AC=5,BC=8,BE=EC=4,AE=3,D是线段BC上的动点(不含端点B,C),AEADAB,即3AD5,AD为正整数,AD=3或AD=4,
12、当AD=4时,E的左右两边各有一个点D满足条件,点D的个数共有3个故选C考点:等腰三角形的性质;勾股定理6、A【解析】根据科学记数法的表示方法解答.【详解】解:把这个数用科学记数法表示为故选:【点睛】此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.7、D【解析】分析:根据反比例函数的性质一一判断即可;详解:A若点(3,6)在其图象上,则(3,6)不在其图象上,故本选项不符合题意; B当k0时,y随x的增大而减小,错误,应该是当k0时,在每个象限,y随x的增大而减小;故本选项不符合题意; C错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形
13、OAPB的面积为|k|;故本选项不符合题意; D正确,本选项符合题意 故选D点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型8、C【解析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,A(1,0),B(0,2),即OA=1,OB=2,在OBA和CDA中,AOB=ADC=90,OAB=DAC,OA=AD,OBACDA(AAS),CD=OB=2,OA=AD=1,(同底等高三角形面积相等),选项正确;C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0x2时,选项错误;当x=3时,即EF=,选项正
14、确;当x0时,随x的增大而增大,随x的增大而减小,选项正确,故选C考点:反比例函数与一次函数的交点问题9、A【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B10、C【解析】根据反比例函数k的几何意义,求出k的值即可解决问题【详解】解:过点P作PQx轴于点Q,OPQ的面积为2,|=2,k0,k=-1故选:C【点睛】本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型11、A【解析】分析:根据平行线的性质求出C,求出
15、DEC的度数,根据三角形内角和定理求出D的度数即可详解:ABCD,A+C=180 A=120,C=60 DEAC,DEC=90,D=180CDEC=30 故选A点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出C的度数是解答此题的关键12、D【解析】依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值【详解】l1l2,设AG=3x,BD=5x,BC:CD=3:2,CD=BD=2x,AGCD,故选D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例平行于三角形的
16、一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例二、填空题:(本大题共6个小题,每小题4分,共24分)13、10【解析】根据翻折的特点得到,.设,则.在中,即,解出x,再根据三角形的面积进行求解.【详解】翻折,又,.设,则.在中,即,解得,.【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.14、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1点睛:本题考查的是一次函数的图象与几何变换,熟知“
17、上加下减”的法则是解答此题的关键15、【解析】分析:易得整理后阴影部分面积为圆心角为110,两个半径分别为4和1的圆环的面积详解:由旋转可得ABCABCBCA=90,BAC=30,AB=4cm,BC=1cm,AC=1cm,ABA=110,CBC=110,阴影部分面积=(SABC+S扇形BAA)-S扇形BCC-SABC=(41-11)=4cm1故答案为4点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解16、x1【解析】要使代数式有意义时,必有1x2,可解得x的范围【详解】根据题意得:1x2,解得:x1故答案为x1【点睛】考查了分式和二次根式有意义的条件二次根式有意义,被开方
18、数为非负数,分式有意义,分母不为217、B【解析】根据平行四边形的判定与矩形的判定定理,即可求得答案【详解】对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线相等且互相平分的四边形一定是矩形故选B【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理此题比较简单,解题的关键是熟记定理18、【解析】连接BD,易证DAB是等边三角形,即可求得ABD的高为,再证明ABGDBH,即可得四边形GBHD的面积等于ABD的面积,由图中阴影部分的面积为S扇形EBFSABD即可求解.【详解】如图,连接BD四边形ABCD是菱形,A60,ADC120,1260,DAB是等边三角形,AB
19、2,ABD的高为,扇形BEF的半径为2,圆心角为60,4+560,3+560,34,设AD、BE相交于点G,设BF、DC相交于点H,在ABG和DBH中, ,ABGDBH(ASA),四边形GBHD的面积等于ABD的面积,图中阴影部分的面积是:S扇形EBFSABD2故答案是:【点睛】本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD的面积等于ABD的面积是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)B(0,1);(1)y=0.5x11x+1;(3)P1(1,0)和P1(7.15,0);【解析】(1)根据y=0
20、.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1得出可设二次函数y=ax1+bx+c=a(x1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可【详解】(1)y=x+1交x轴于点A(4,0),0=(4)+m,m=1,与y轴交于点B,x=0,y=1B点坐标为:(0,1),(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1可设二次函数y=a(x1)1把B(0,1)代入得:a=0.5二次函数的解析式:y=0.5x11x+
21、1;(3)()当B为直角顶点时,过B作BP1AD交x轴于P1点由RtAOBRtBOP1,得:OP1=1,P1(1,0),()作P1DBD,连接BP1,将y=0.5x+1与y=0.5x11x+1联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时DAP1=BAO,BOA=ADP1,ABOAP1D, ,解得:AP1=11.15,则OP1=11.154=7.15,故P1点坐标为(7.15,0);点P的坐标为:P1(1,0)和P1(7.15,0) 【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要
22、漏解20、(1)y有反向值,反向距离为2;yx2有反向值,反向距离是1;(2)b1;0n8;(3)当m2或m2时,n2,当2m2时,n2【解析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)根据题意可以求得相应的b的值;根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题【详解】(1)由题意可得,当mm+1时,该方程无解,故函数yx+1没有反向值,当m时,m1,n1(1)2,故y有反向值,反向距离为2,当mm2,得m0或m1,n0(1)1,故yx2有反向值,反向距离是1;(2)令mm2b2m,解得
23、,m0或mb21,反向距离为零,|b210|0,解得,b1;令mm2b2m,解得,m0或mb21,n|b210|b21|,1b3,0n8;(3)y,当xm时,mm23m,得m0或m2,n202,m2或m2;当xm时,mm23m,解得,m0或m2,n0(2)2,2m2,由上可得,当m2或m2时,n2,当2m2时,n2【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题21、无解【解析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零【详解】解:两边同乘以(x+2
24、)(x2)得:x(x+2)(x+2)(x2)=8去括号,得:+2x+4=8 移项、合并同类项得:2x=4 解得:x=2经检验,x=2是方程的增根 方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验22、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】(1)根据折线统计图数字进行填表即可; (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,70x74无,共0个;75x79之间
25、有75,共1个;80x84之间有84,82,1,83,共4个;85x89之间有89,86,86,85,86,共5个;90x94之间和95x100无,共0个故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为8975=14分;甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,中位数为(8485)84.5;乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的
26、极差小于乙,说明甲成绩变化范围小或:乙,理由:在90x100的分数段中,乙的次数大于甲(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据23、x+1,2.【解析】先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.【详解】原式=x2+x(x21)=x2+xx2+1=x+1,当x=1时,原式=2【点睛】本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.24
27、、证明见解析.【解析】试题分析:作于点F,然后证明 ,从而求出所所以BM与CN的长度相等试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC, AEM=FEN,在RtAME和RtFNE中,E为AB的中点,AB=CF,AEM=FEN,AE=EF,MAE=NFE,RtAMERtFNE,AM=FN,MB=CN.25、 (1) B(-1.2);(2) y=;(3)见解析.【解析】(1)过A作ACx轴于点C,过B作BDx轴于点D,则可证明ACOODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式
28、;(3)由四边形ABOP可知点P在线段AO的下方,过P作PEy轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标【详解】(1)如图1,过A作ACx轴于点C,过B作BDx轴于点D,AOB为等腰三角形,AO=BO,AOB=90,AOC+DOB=DOB+OBD=90,AOC=OBD,在ACO和ODB中 ACOODB(AAS),A(2,1),OD=AC=1,BD=OC=2,B(-1,2);(2)抛物线过O点,可设抛物线解析式为y=ax2+bx,把A、B两点
29、坐标代入可得,解得,经过A、B、O原点的抛物线解析式为y=x2-x;(3)四边形ABOP,可知点P在线段OA的下方,过P作PEy轴交AO于点E,如图2,设直线AO解析式为y=kx,A(2,1),k=,直线AO解析式为y=x,设P点坐标为(t,t2-t),则E(t,t),PE=t-(t2-t)=-t2+t=-(t-1)2+,SAOP=PE2=PE-(t-1)2+,由A(2,1)可求得OA=OB=,SAOB=AOBO=,S四边形ABOP=SAOB+SAOP=-(t-1)2+=,-0,当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),综上可知存在使四边形ABOP的面积最大的点P,其坐标
30、为(1,-)【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键本题考查知识点较多,综合性较强,难度适中26、 (2) k;(2)-2.【解析】试题分析:(2)根据方程的系数结合根的判别式,即可得出=4k+50,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x2+x2=22k、x2x2=k22,将其代入x22+x22=(x2+x2)22x2x2=26+x2x2中,解之即可得出k的值试题解
31、析:(2)关于x的方程x2+(2k2)x+k22=0有两个实数根x2,x2,=(2k2)24(k22)=4k+50,解得:k,实数k的取值范围为k(2)关于x的方程x2+(2k2)x+k22=0有两个实数根x2,x2,x2+x2=22k,x2x2=k22x22+x22=(x2+x2)22x2x2=26+x2x2,(22k)22(k22)=26+(k22),即k24k22=0,解得:k=2或k=6(不符合题意,舍去)实数k的值为2考点:一元二次方程根与系数的关系,根的判别式.27、 (1) 特殊情形:;类比探究: 是定值,理由见解析;(2) 或【解析】(1)证明,即可求解;(2)点E与点B重合时,四边形EBFA为矩形,即可求解;(3)分时、时,两种情况分别求解即可【详解】解:(1),故答案为;(2)点E与点B重合时,四边形EBFA为矩形,则为定值;(3)当时,如图3,过点E、F分别作直线BC的垂线交于点G,H,由(1)知:,同理, .则,则 ;当时,如图4,则,则,则 ,故或 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏