《2023届陕西省三原县市级名校中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届陕西省三原县市级名校中考数学对点突破模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A3B4C5D62如图,ABCD对角线AC与BD交于点O,且AD3,AB5,在AB延长线上取一点E,使BEAB,连接OE交BC于F,则BF的长为()ABCD13下列条件中不能判定三角形全等的是(
2、 )A两角和其中一角的对边对应相等B三条边对应相等C两边和它们的夹角对应相等D三个角对应相等4已知二次函数y(xh)2+1(为常数),在自变量x的值满足1x3的情况下,与其对应的函数值y的最大值为5,则h的值为( )A3或1+B3或3+C3+或1D1或1+5对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A60,的补角120,B90,的补角90,C100,的补角80,D两个角互为邻补角6的相反数是( )AB2CD7将三粒均匀的分别标有,的正六面体骰子同时掷出,朝上一面上的数字分别为,则,正好是直角三角形三边长的概率是()ABCD8下列计算正确的是()A2x23x2x2Bxx
3、x2C(x1)x1D3x3x9下列各式正确的是( )ABCD10若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x21012y83010则抛物线的顶点坐标是()A(1,3)B(0,0)C(1,1)D(2,0)二、填空题(共7小题,每小题3分,满分21分)11已知关于x的二次函数yx22x2,当axa2时,函数有最大值1,则a的值为_12如图,数轴上点A所表示的实数是_13不等式组的解集是_14如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取ABC和DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取A1B1C1和D1E
4、1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去,则正六角星形A4F4B4D4C4E4的面积为_15如图,在RtABC中,BAC=90,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_16孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈10尺,1尺10寸),则竹竿的长为_17受益于电
5、子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_三、解答题(共7小题,满分69分)18(10分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30,然后向山脚直行60米到达C处,再测得山顶A的仰角为45,求山高AD的长度(测角仪高度忽略不计)19(5分)校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由20(8分)对于某一函数给出
6、如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.若其不变长度为零,求b的值;若1b3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(xm)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长
7、度q满足0q3,则m的取值范围为 .21(10分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面ABC如图2所示,BC=10米,ABC=ACB=36,改建后顶点D在BA的延长线上,且BDC=90,求改建后南屋面边沿增加部分AD的长(结果精确到0.1米)22(10分)如图,在RtABC中,C=90,BE平分ABC交AC于点E,作EDEB交AB于点D,O是BED的外接圆求证:AC是O的切线;已知O的半径为2.5,BE=4,求BC,AD的长23(12分)先化简,再求值:a(a3b)+(a+b)2a(ab),其中a=1,b=24(14分)中央电视台的“朗读者”节
8、目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.1714b880.16合计50c我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1(1)统计表中的a、b、c的值;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有600名学生,你认为根据以上调查结果可以
9、估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1【详解】点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S1=4+4-11=2故选D2、A【解析】首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:EFBEOM与OM的
10、值,利用相似三角形的对应边成比例即可求得BF的值【详解】取AB的中点M,连接OM,四边形ABCD是平行四边形,ADBC,OB=OD,OMADBC,OM=AD=3=,EFBEOM,AB=5,BE=AB,BE=2,BM=,EM=+2=,BF=,故选A【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识解此题的关键是准确作出辅助线,合理应用数形结合思想解题3、D【解析】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D4、C【解析】当xh时,y随x的增大而增大,当x
11、h时,y随x的增大而减小,若h1x3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);若1x3h,当x=3时,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍)综上,h的值为1-或3+,故选C点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键5、C【解析】熟记反证法的步骤,然后进行判断即可解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、的补角,符合假命题的结论,故A错误;B、的补角=,符合假命题的结论,故B错误;C、的补角,与假命题结论相反,故C正确;D、由
12、于无法说明两角具体的大小关系,故D错误故选C6、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .7、C【解析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能
13、,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.8、C【解析】根据合并同类项法则和去括号法则逐一判断即可得【详解】解:A2x2-3x2=-x2,故此选项错误;Bx+x=2x,故此选项错误;C-(x-1)=-x+1,故此选项正确;D3与x不能合并,此选项错误;故选C【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键9、A【解析】,则B错;,则C;,则D错,故选A10、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标详解:当或时,当时, ,解得 ,二次函数解析式为,抛物线的顶点坐标为,故选C点睛
14、:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、1或1【解析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当axa+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论【详解】解:当y=1时,x2-2x-2=1,解得:x1=-1,x2=3,当axa+2时,函数有最大值1,a=-1或a+2=3,即a=1故答案为-1或1【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键12、【解析】A点到-1的距离等于直角三角形斜边的长度,
15、应用勾股定理求解出直角三角形斜边长度即可.【详解】解:直角三角形斜边长度为,则A点到-1的距离等于,则A点所表示的数为:1+【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.13、2x1【解析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集【详解】由得x2,由得x1,不等式组的解集为2x1故答案为:2x1【点睛】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)14、【解析】正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的,正六角星形A2
16、F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的同理正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的,正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的15、2 【解析】过点E作EFBC于F,根据已知条件得到BEF是等腰直角三角形,求得BEABAE6,根据勾股定理得到BFEF3,求得DFBFBD,根据勾股定理即可得到结论【详解】解:过点E作EFBC于F,BFE90,BAC90,ABAC4,BC45,BC4,BEF是等腰直角三角形,BEABAE6,BFEF3,D是BC的中点,BD2,DFBFBD,DE=2故答案为2【点睛】
17、本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键16、四丈五尺【解析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,解得x=45(尺)故答案为:四丈五尺【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键17、5.51【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1
18、时,n是负数详解:5.5亿=5 5000 0000=5.51,故答案为5.51点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值三、解答题(共7小题,满分69分)18、30米【解析】设ADxm,在RtACD中,根据正切的概念用x表示出CD,在RtABD中,根据正切的概念列出方程求出x的值即可【详解】由题意得,ABD30,ACD45,BC60m,设ADxm,在RtACD中,tanACD,CDADx,BDBC+CDx+60,在RtABD中,tanABD,米,答:山高AD为30米【点睛】本题考查的是解直角三角形的应
19、用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键19、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围成的矩形花圃面积不能达到172m1【解析】(1)假设能,设AB的长度为x米,则BC的长度为(311x)米,再根据矩形面积公式列方程求解即可得到答案.(1)假设能,设AB的长度为y米,则BC的长度为(361y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(311x)米,根据题意得:x(311x)=116,解得:x1=7,x1=9,311x=18或311x=14,假设成立,即长为
20、18米、宽为7米或长为14米、宽为9米(1)假设能,设AB的长度为y米,则BC的长度为(361y)米,根据题意得:y(361y)=172,整理得:y118y+85=2=(18)14185=162,该方程无解,假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m120、详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)首先由函数y=1x1bx=x,求得x(1xb1)=2,然后由其不变长度为零,求得答案;由,利用1b3,可求得其不变长度q的取值范围;(3)由记函数y=x11x(xm)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G的图象关于x=
21、m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案试题解析:解:(1)函数y=x1,令y=x,则x1=x,无解;函数y=x1没有不变值;y=x-1 =,令y=x,则,解得:x=1,函数的不变值为1,q=1(1)=1函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,函数y=x1的不变值为:2或1,q=12=1;(1)函数y=1x1bx,令y=x,则x=1x1bx,整理得:x(1xb1)=2q=2,x=2且1xb1=2,解得:b=1;由知:x(1xb1)=2,x=2或1xb1=2,解得:x1=2,x1=1b3,1x11,12q12,1q1;(3)记函数y=x11x(xm)
22、的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,函数G的图象关于x=m对称,G:y= 当x11x=x时,x3=2,x4=3;当(1mx)11(1mx)=x时,=1+8m,当2,即m时,q=x4x3=3;当2,即m时,x5=,x6=当m2时,x3=2,x4=3,x62,x4x63(不符合题意,舍去);当x5=x4时,m=1,当x6=x3时,m=3;当2m1时,x3=2(舍去),x4=3,此时2x5x4,x62,q=x4x63(舍去);当1m3时,x3=2(舍去),x4=3,此时2x5x4,x62,q=x4x63;当m3时,x3=2(舍去),x4=3(舍去),此时x53,x62,q=x5
23、x63(舍去);综上所述:m的取值范围为1m3或m点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性注意掌握分类讨论思想的应用是解答此题的关键21、1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可试题解析:BDC=90,BC=10,sinB=, CD=BCsinB=100.2=5.9,在RtBCD中,BCD=90B=9036=54, ACD=BCDACB=5436=18,在RtACD中,tanACD=, AD=CD
24、tanACD=5.90.32=1.8881.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米考点:解直角三角形的应用22、(1)证明见解析;(2)BC=,AD=【解析】分析:(1)连接OE,由OB=OE知OBE=OEB、由BE平分ABC知OBE=CBE,据此得OEB=CBE,从而得出OEBC,进一步即可得证;(2)证BDEBEC得,据此可求得BC的长度,再证AOEABC得,据此可得AD的长详解:(1)如图,连接OE,OB=OE,OBE=OEB,BE平分ABC,OBE=CBE,OEB=CBE,OEBC,又C=90,AEO=90,即OEAC,AC为O的切线;(2)EDBE,BED=C=90
25、,又DBE=EBC,BDEBEC,即,BC=;AEO=C=90,A=A,AOEABC,即,解得:AD=点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质23、 【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;【详解】解:原式=a23ab+a2+2ab+b2a2+ab=a2+b2,当a=1、b=时,原式=12+()2=1+=【点睛】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键24、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;【解析】(1)根据百分比=计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【详解】(1)a=500.2=10、b=1450=0.28、c=5050=1;(2)补全图形如下:(3)所有被调查学生课外阅读的平均本数=6.4(本)(4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600=264(名)【点睛】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型