2023届河北省邯郸市锦玉中学中考四模数学试题含解析.doc

上传人:lil****205 文档编号:87840626 上传时间:2023-04-18 格式:DOC 页数:16 大小:629.50KB
返回 下载 相关 举报
2023届河北省邯郸市锦玉中学中考四模数学试题含解析.doc_第1页
第1页 / 共16页
2023届河北省邯郸市锦玉中学中考四模数学试题含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2023届河北省邯郸市锦玉中学中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届河北省邯郸市锦玉中学中考四模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1随着“中国诗词大会”节目的热播,唐诗宋词精选一书也随之热销如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位

2、:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A一次性购买数量不超过10本时,销售价格为20元/本Ba520C一次性购买10本以上时,超过10本的那部分书的价格打八折D一次性购买20本比分两次购买且每次购买10本少花80元2下列计算正确的是( )Aa+a=a4B(-a2)3=a6C(a+1)2=a2+1D8ab2(-2ab)=-4b3如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y

3、与t的函数图象如图2,则下列结论错误的是( )AAE=6cmBC当0t10时,D当t=12s时,PBQ是等腰三角形4如图,在矩形ABCD中,E是AD边的中点,BEAC,垂足为点F,连接DF,分析下列四个结论:AEFCAB;CF=2AF;DF=DC;tanCAD=其中正确的结论有()A4个B3个C2个D1个5已知一次函数且随的增大而增大,那么它的图象不经过()A第一象限B第二象限C第三象限D第四象限65的倒数是AB5CD57下列运算正确的是()A5a+2b=5(a+b)Ba+a2=a3C2a33a2=6a5D(a3)2=a58若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )A1,2

4、,3B1,2C1,3D2,39下列代数运算正确的是()A(x+1)2=x2+1B(x3)2=x5C(2x)2=2x2Dx3x2=x510若二次函数的图象经过点(1,0),则方程的解为( )A,B,C,D,二、填空题(共7小题,每小题3分,满分21分)11边长为6的正六边形外接圆半径是_12一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 13如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段OA与双曲线的交点D恰为OA的中点,则平移距离OO长为_14阅读材料:如图,C为线段BD上一动点,分别过点B、D作ABBD,EDBD,连接AC、EC设CD=x,若AB

5、=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1根据以上阅读材料,可构图求出代数式的最小值为_15如图,在ABC中,AB=AC=2,BAC=120,点D、E都在边BC上,DAE=60若BD=2CE,则DE的长为_.16如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_17分式方程的解是_三、解答题(共7小题,满分69分)18(10分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B

6、、C、D四个等级,绘制了如图尚不完整的统计图表评估成绩n(分)评定等级频数90n100A280n90B70n80C15n70D6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率19(5分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹已知:如图,线段a,h求作:ABC,使AB=AC,且BAC=,高AD=h20(8分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建如图,A、B两地之间有一座山,汽车原来从A地到B地需

7、途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶已知BC=80千米,A=45,B=30开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:1.41,1.73)21(10分)计算:22+2cos60+(3.14)0+(1)201822(10分)在平面直角坐标系 xOy 中,抛物线 y=ax24ax+3a2(a0)与 x轴交于 A,B 两(点 A 在点 B 左侧)(1)当抛物线过原点时,求实数 a 的值;(2)求抛物线的对称轴;求抛物线的顶点的纵坐标(用含 a 的代数式表示);(3)当 AB4 时,求实

8、数 a 的取值范围23(12分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角EAD为45,在B点测得D点的仰角CBD为60.求这两座建筑物的高度(结果保留根号).24(14分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆如图所示,已知:I是ABC的BC边上的旁切圆,E、F分别是切点,ADIC于点D(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论(2)设AB=AC=5,BC=6,如果DIE和AEF的面积之比等于m,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程参考答案一、选择题(每小题只有一个正确答案,每小题3分

9、,满分30分)1、D【解析】A、根据单价总价数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价总价数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其前十本的单价即可得出C正确;B、根据总价200+超过10本的那部分书的数量16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误此题得解【详解】解:A、2001020(元/本),一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、(840200)(5010)16(元/本),16200.8,一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项

10、正确;B、200+16(3010)520(元),a520,B选项正确;D、200220016(2010)40(元),一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误故选D【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键2、D【解析】各项计算得到结果,即可作出判断【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键3、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=

11、10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=1(3)结论C正确,理由如下:如图,过点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不是等腰三角形,即此时PBQ不是等腰三角形故选D4、A【解析】正确只要证明EAC=ACB,ABC=AFE=90即可;正确由ADBC,推出AEFCBF,推出=,由AE

12、=AD=BC,推出=,即CF=2AF;正确只要证明DM垂直平分CF,即可证明;正确设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N四边形ABCD是矩形,ADBC,ABC=90,AD=BC,EAC=ACBBEAC于点F,ABC=AFE=90,AEFCAB,故正确;ADBC,AEFCBF,=AE=AD=BC,=,CF=2AF,故正确;DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NFBEAC于点F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD

13、=2a,由BAEADC,有 =,即b=a,tanCAD=故正确故选A【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键解题时注意:相似三角形的对应边成比例5、B【解析】根据一次函数的性质:k0,y随x的增大而增大;k0,y随x的增大而减小,进行解答即可【详解】解:一次函数y=kx-3且y随x的增大而增大,它的图象经过一、三、四象限,不经过第二象限,故选:B【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.6、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】

14、解:5的倒数是故选C7、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键8、C【解析】试题分析:解分式方程得:等式的两边都乘以(x2),得x=2(x2)+m,解得x=4m,且x=4m2,已知关于x的分式方的解为正数,得m=1,m=3,故选C考点:分式方程的解9、D【解析】分别根据同底数幂的乘法、幂的乘

15、方与积的乘方、完全平方公式进行逐一计算即可【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.10、C【解析】二次函数的图象经过点(1,0),方程一定有一个解为:x=1,抛物线的对称轴为:直线x=1,二次函数的图象与x轴的另一个交点为:(3,0),方程的解为:,故选C考点:抛物线与x轴的交点二、填空题(共7小题,每小题3分,满分21分)11、6【解析】根据正六边形的外接圆半径

16、和正六边形的边长将组成一个等边三角形,即可求解【详解】解:正6边形的中心角为360660,那么外接圆的半径和正六边形的边长将组成一个等边三角形,边长为6的正六边形外接圆半径是6,故答案为:6.【点睛】本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键12、-1.【解析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解【详解】一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1x1=1,解得x1=-1故答案为-1.13、1【解析】直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案【详

17、解】点 A(2,2)在双曲线上,k4,平移后的线段OA与双曲线的交点 D 恰为 OA的中点,D点纵坐标为:1,DE1,OE1,D点横坐标为:x4,OO1,故答案为1【点睛】本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键14、4【解析】根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题【详解】如图所示:C为线段BD上一动点,分别过点B、D作ABBD,EDBD,连接AC、EC设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,ABBD,EDBD,ABDE,ABCEDC,解得:DC=即当x=时,代数式有最小值,

18、此时为:故答案是:4【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解15、1-1【解析】将ABD绕点A逆时针旋转120得到ACF,取CF的中点G,连接EF、EG,由AB=AC=2、BAC=120,可得出ACB=B=10,根据旋转的性质可得出ECG=60,结合CF=BD=2CE可得出CEG为等边三角形,进而得出CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在RtCEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解【详解】将ABD绕点A逆时

19、针旋转120得到ACF,取CF的中点G,连接EF、EG,如图所示AB=AC=2,BAC=120,ACB=B=ACF=10,ECG=60CF=BD=2CE,CG=CE,CEG为等边三角形,EG=CG=FG,EFG=FEG=CGE=10,CEF为直角三角形BAC=120,DAE=60,BAD+CAE=60,FAE=FAC+CAE=BAD+CAE=60在ADE和AFE中,ADEAFE(SAS),DE=FE设EC=x,则BD=CF=2x,DE=FE=6-1x,在RtCEF中,CEF=90,CF=2x,EC=x,EF=x,6-1x=x,x=1-,DE=x=1-1故答案为:1-1【点睛】本题考查了全等三角

20、形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键16、1【解析】骑车的学生所占的百分比是100%=35%,步行的学生所占的百分比是110%15%35%=40%,若该校共有学生1500人,则据此估计步行的有150040%=1(人),故答案为117、x=13【解析】解分式方程的步骤:去分母;求出整式方程的解;检验;得出结论【详解】,去分母,可得x5=8,解得x=13,经检验:x=13是原方程的解【点睛】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验三、解答题(共7小题,满分69分)18、(1)25;(2)848;(3)

21、【解析】试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案试题解析:(1)C等级频数为15,占60%,m=1560%=25;(2)B等级频数为:252156=2,B等级所在扇形的圆心角的大小为:360=28.8=2848;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:共有12种等可能的结果,其中至少有一家是A等级的有10种情况,其中至少有一家

22、是A等级的概率为:=考点:频数(率)分布表;扇形统计图;列表法与树状图法19、见解析【解析】作CAB=,再作CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出ABC【详解】解:如图所示,ABC即为所求【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键20、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角ACD中,解直角三角形求出CD,进而解答即可;(2)在直角CBD中,

23、解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程【详解】解:(1)过点C作AB的垂线CD,垂足为D,ABCD,sin30=,BC=80千米,CD=BCsin30=80(千米),AC=(千米),AC+BC=80+40401.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)cos30=,BC=80(千米),BD=BCcos30=80(千米),tan45=,CD=40(千米),AD=(千米),AB=AD+BD=40+4040+401.73=109.2(千米),汽车从A地到B地比原来少走多少路程为:AC+BCAB=136.410

24、9.2=27.2(千米)答:汽车从A地到B地比原来少走的路程为27.2千米【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线21、-1【解析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值【详解】解:原式4+1+1+11【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键22、(1)a=;(2)x=2;抛物线的顶点的纵坐标为a2;(3)a 的范围为 a2 或 a【解析】(1)把原点坐标代入 y=ax24ax+3a2即可求得a的值;(2)把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线

25、的顶点的纵坐标;(3)设 A(m,1),B(n,1),利用抛物线与 x 轴的交点问题,则 m、n 为方程 ax24ax+3a2=1 的两根,利用判别式的意义解得 a1 或 a2,再利用根与系数的关系得到 m+n=4,mn= ,然后根据完全平方公式利用 nm4 得到(m+n)24mn16,所以 42416,接着解关于a 的不等式,最后确定a的范围【详解】(1)把(1,1)代入 y=ax24ax+3a2 得 3a2=1,解得 a=;(2)y=a(x2)2a2, 抛物线的对称轴为直线 x=2;抛物线的顶点的纵坐标为a2;(3)设 A(m,1),B(n,1),m、n 为方程 ax24ax+3a2=1

26、的两根,=16a24a(3a2)1,解得 a1 或 a2,m+n=4,mn=, 而 nm4,(nm)216,即(m+n)24mn16,424 16,即1,解得 a或 a1a 的范围为 a2 或 a【点睛】本题考查了抛物线与 x 轴的交点:把求二次函数 y=ax2+bx+c(a,b,c 是常数,a1)与 x 轴的交点坐标问题转化为解关于 x 的一元二次方程也考查了二次函数的性质23、甲建筑物的高AB为(3030)m,乙建筑物的高DC为30m【解析】如图,过A作AFCD于点F,在RtBCD中,DBC=60,BC=30m,=tanDBC,CD=BCtan60=30m,乙建筑物的高度为30m;在RtA

27、FD中,DAF=45,DF=AF=BC=30m,AB=CF=CDDF=(3030)m,甲建筑物的高度为(3030)m24、 (1) D、E、F三点是同在一条直线上(2) 6x213x+6=1【解析】(1)利用切线长定理及梅氏定理即可求证;(2)利用相似和韦达定理即可求解.解:(1)结论:D、E、F三点是同在一条直线上 证明:分别延长AD、BC交于点K,由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,再由切线长定理得:AC+CE=AF,BE=BF, KE=AF,由梅涅劳斯定理的逆定理可证,D、E、F三点共线,即D、E、F三点共线 (2)AB=AC=5,BC=6,A、E、I三点共线,CE=BE=3,AE=4,连接IF,则ABEAIF,ADICEI,A、F、I、D四点共圆 设I的半径为r,则:,即,由AEFDEI得:,因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x213x+6=1 点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁