《2023届黑龙江省佳木斯市同江市场直中学中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省佳木斯市同江市场直中学中考试题猜想数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使DEF与ABC相似,则点F应是G,H,M,N四点中的( )AH或NBG或HCM或NDG或M2如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其
2、中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A8073B8072C8071D80703若ABCABC,A=40,C=110,则B等于( )A30B50C40D704某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )ABCD5一、单选题点P(2,1)关于原点对称的点P的坐标是()A(2,1)B(2,1)C(1,2)D(1,2)6如图所示,ABC为等腰直角三角形,ACB=90,AC=BC=2
3、,正方形DEFG边长也为2,且AC与DE在同一直线上,ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()ABCD7在同一平面内,下列说法:过两点有且只有一条直线;两条不相同的直线有且只有一个公共点;经过直线外一点有且只有一条直线与已知直线垂直;经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A1个B2个C3个D4个8ABC在网络中的位置如图所示,则cosACB的值为()ABCD9如图,E,B,F,C四点在一条直线上,EBCF,AD,再添一个条
4、件仍不能证明ABCDEF的是()AABDEBDFACCEABCDABDE10下列运算正确的是()A2aa=1 B2a+b=2ab C(a4)3=a7 D(a)2(a)3=a5二、填空题(本大题共6个小题,每小题3分,共18分)11若一元二次方程有两个不相等的实数根,则k的取值范围是 12如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2019次运动后,动点P的坐标是_13如图,在RtABC中,ACB=90,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=
5、,则DE=_14分解因式:=_15计算:2cos60+(5)=_.16若m22m1=0,则代数式2m24m+3的值为 三、解答题(共8题,共72分)17(8分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度用测角仪在A处测得雕塑顶端点C的仰角为30,再往雕塑方向前进4米至B处,测得仰角为45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)18(8分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y ()与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD
6、表示恒温系统关闭阶段请根据图中信息解答下列问题:求这天的温度y与时间x(0x24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10时,蔬菜会受到伤害问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?19(8分)(1)计算:;(2)化简,然后选一个合适的数代入求值20(8分)如图,在ABC中,C=90,AD平分CAB,交CB于点D,过点D作DEAB,于点E求证:ACDAED;若B=30,CD=1,求BD的长21(8分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元求每台A型电脑和B型电脑的销售利润;该商店计划一
7、次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0m100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案22(10分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点 (1)如图1,若ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边
8、,以点、Q为顶点的四边形是平行四边形,求点的坐标;(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若=11 求的值23(12分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?24计算:(2)0+()1+4cos30|4|参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据两三角形三条边对应成比
9、例,两三角形相似进行解答【详解】设小正方形的边长为1,则ABC的各边分别为3、,只能F是M或N时,其各边是6、2,2与ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键2、A【解析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=41+1;第2个图案中涂有阴影的小正方形个数为:9=42+1;第3个图案中涂有阴影的小正方形个数为:13=43+1;发现规律:第n个图案中涂有阴影的小正方形个数
10、为:4n+1;第2018个图案中涂有阴影的小正方形个数为:4n+1=42018+1=1故选:A【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.3、A【解析】利用三角形内角和求B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:B=30,根据相似三角形的性质可得:B=B=30.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.4、A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题
11、意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.5、A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1)故选A【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数6、A【解析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可【详解】解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为当C从D点运动到E点时,即时,当A
12、从D点运动到E点时,即时,与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应故选A【点睛】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围7、C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解【详解】解:在同一平面内,过两点有且只有一条直线,故正确;两条不相同的直线相交有且只有一个公共点,平行没有公共点,故错误;在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故正确;经过直线外一点有且只有一条直线与已知直线平行,故正确,综上所述,正确的有共3个,故选C【点睛】本题考查了平行公理,直线的
13、性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键8、B【解析】作ADBC的延长线于点D,如图所示:在RtADC中,BD=AD,则AB=BDcosACB=,故选B9、A【解析】由EB=CF,可得出EF=BC,又有A=D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明ABCDEF,那么添加的条件与原来的条件可形成SSA,就不能证明ABCDEF了【详解】EB=CF,EB+BF=CF+BF,即EF=BC,又A=D,A、添加DE=AB与原条件满足SSA,不能证明ABCDEF,故A选项正确B、添加DFAC,可得DFE=ACB,根据AAS能证明ABCDEF,故B选项错误C
14、、添加E=ABC,根据AAS能证明ABCDEF,故C选项错误D、添加ABDE,可得E=ABC,根据AAS能证明ABCDEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角10、D【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答【详解】A、2aa=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(a)2(a)3=
15、a5,故本选项正确,故选D【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、:k1【解析】一元二次方程有两个不相等的实数根,=44k0,解得:k1,则k的取值范围是:k1故答案为k112、(2019,2)【解析】分析点P的运动规律,找到循环次数即可【详解】分析图象可以发现,点P的运动每4次位置循环一次每循环一次向右移动四个单位2019=4504+3当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【点睛】本题是规律探究题,解题关键
16、是找到动点运动过程中,每运动多少次形成一个循环13、【解析】在RtABC中,BC=6,sinA=AB=10D是AB的中点,AD=AB=1C=EDA=90,A=AADEACB,即解得:DE=14、x(y+2)(y-2)【解析】原式提取x,再利用平方差公式分解即可【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键15、1【解析】解:原式=12+1=1故答案为116、1【解析】试题分析:先求出m22m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解解:由m22m1=
17、0得m22m=1,所以,2m24m+3=2(m22m)+3=21+3=1故答案为1考点:代数式求值三、解答题(共8题,共72分)17、该雕塑的高度为(2+2)米【解析】过点C作CDAB,设CD=x,由CBD=45知BD=CD=x米,根据tanA=列出关于x的方程,解之可得【详解】解:如图,过点C作CDAB,交AB延长线于点D,设CD=x米,CBD=45,BDC=90,BD=CD=x米,A=30,AD=AB+BD=4+x,tanA=,即,解得:x=2+2,答:该雕塑的高度为(2+2)米【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应
18、用18、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可详解:(1)设线段AB解析式为y=k1x+b(k0)线段AB过点(0,10),(2,14)代入得解得AB解析式为:y=2x+10(0x5)B在线段AB上当x=5时,y=20B坐标为(5,20)线段BC的解析式为:y=20(5x10)设双曲线CD解析式为:y=(k20)C(10,20)k2=200双曲线CD解析式为:y=(10x24)y关于x的函数解析式为:(2)由(1)恒温系
19、统设定恒温为20C(3)把y=10代入y=中,解得,x=2020-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式解答时应注意临界点的应用19、(1)0;(2),答案不唯一,只要x1,0即可,当x=10时,【解析】(1)根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可;(2)先把括号内通分,再把除法运算化为乘法运算,然后约分,再根据分式有意义的条件把x=10代入计算即可【详解】解:(1)原式=13+2+11=0;(2)原式=由题意可知,x1当x=10时,原式=【点睛】本题考查实数的运算;零
20、指数幂;负整数指数幂;特殊角的三角函数值;分式的化简求值,掌握计算法则正确计算是本题的解题关键20、(1)见解析(2)BD=2【解析】解:(1)证明:AD平分CAB,DEAB,C=90,CD=ED,DEA=C=90在RtACD和RtAED中,RtACDRtAED(HL)(2)RtACDRtAED ,CD=1,DC=DE=1DEAB,DEB=90B=30,BD=2DE=2(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可(2)求出DEB=90,DE=1,根据含30度角的直角三角形性质求出即可21、 (1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(
21、3) 70台A型电脑和30台B型电脑的销售利润最大【解析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)据题意得,y=50x+15000,利用不等式求出x的范围,又因为y=50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x150(100x),即y=(m50)x+15000,分三种情况讨论,当0m50时,y随x的增大而减小,m=50时,m50=0,y=15000,当50m100时,m500,y随x的增大而增大,分别进行求解【详解】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意
22、得解得 答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元(2)据题意得,y=100x+150(100x),即y=50x+15000,据题意得,100x2x,解得x33,y=50x+15000,500,y随x的增大而减小,x为正整数,当x=34时,y取最大值,则100x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大(3)据题意得,y=(100+m)x+150(100x),即y=(m50)x+15000,33x70当0m50时,y随x的增大而减小,当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大m=50时,m50=0,y=1500
23、0,即商店购进A型电脑数量满足33x70的整数时,均获得最大利润;当50m100时,m500,y随x的增大而增大,当x=70时,y取得最大值即商店购进70台A型电脑和30台B型电脑的销售利润最大【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况22、 (1) ;(2) 和;(3) 【解析】(1)设,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标
24、;(3)过点作DH轴于点,由:,可得:设,可得 点坐标为,可得设点坐标为.可证,利用相似性质列出方程整理可得到 ,将代入抛物线上,可得,联立解方程组,即可解答.【详解】解:设,则是方程的两根,已知抛物线与轴交于点在中:,在中:,为直角三角形,由题意可知,即,,解得:,又,由可知:,令则,以为边,以点、Q为顶点的四边形是四边形时,设抛物线的对称轴为 ,l与交于点,过点作l,垂足为点,即四边形为平行四边形,又l轴,=,点的横坐标为,即点坐标为当以为边,以点、Q为顶点的四边形是四边形时,设抛物线的对称轴为 ,l与交于点,过点作l,垂足为点,即四边形为平行四边形,又l轴,=,点的横坐标为,即点坐标为符
25、合条件的点坐标为和 过点作DH轴于点,:, :设,则点坐标为,点在抛物线上,点坐标为,由(1)知,即,又在抛物线上,,将代入得:,解得(舍去),把代入得:【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.23、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元【解析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润销售量”列出函数解析式,由二次函数的性质求得最值即可本题解析
26、:解:(1)若7.5x70,得x4,不符合题意;则5x1070,解得x12.答:工人甲第12天生产的产品数量为70件(2)由函数图象知,当0x4时,P40,当4x14时,设Pkxb,将(4,40)、(14,50)代入,得解得Px36.当0x4时,W(6040)7.5x150x,W随x的增大而增大,当x4时,W最大600;当4600,当x11时,W取得最大值845元答:第11天时,利润最大,最大利润是845元点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题24、4【解析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案【详解】(2)0+()1+4cos30|4|=1+3+4(42)=4+24+2=4【点睛】此题主要考查了实数运算,正确化简各数是解题关键