《2023届浙江省台州市温岭市箬横镇东浦中学中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省台州市温岭市箬横镇东浦中学中考数学考前最后一卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A8,6 B7,6 C7,8 D8,72下列关于统计与概率的知识说法正确的是()A武
2、大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B检测100只灯泡的质量情况适宜采用抽样调查C了解北京市人均月收入的大致情况,适宜采用全面普查D甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数3的绝对值是()A8B8CD4在同一平面直角坐标系中,一次函数ykx2k和二次函数ykx2+2x4(k是常数且k0)的图象可能是()ABCD5右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )ABCD6已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A1B2C3D47如图,平面直角坐标系xOy中,四边形OABC的边O
3、A在x轴正半轴上,BCx轴,OAB90,点C(3,2),连接OC以OC为对称轴将OA翻折到OA,反比例函数y的图象恰好经过点A、B,则k的值是()A9BCD38已知关于x,y的二元一次方程组的解为,则a2b的值是()A2B2C3D39如图,直线l1l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC若ABC=67,则1=()A23B46C67D7810某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A最喜欢篮球的人数最多B最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C全班共有50名
4、学生D最喜欢田径的人数占总人数的10 %二、填空题(共7小题,每小题3分,满分21分)11如图,AB是O的直径,点C是O上的一点,若BC=6,AB=10,ODBC于点D,则OD的长为_12股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_13如图,M的半径为2,圆心M(3,4),点P是M上的任意一点,PAPB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_14分解因式:2a44
5、a2+2_15如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为_ 16点A(a,3)与点B(4,b)关于原点对称,则a+b()A1B4C4D117如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .三、解答题(共7小题,满分69分)18(10分)如图,矩形ABCD中,CEBD于E,CF平分DCE与DB交于点F求证:BFBC;若AB4cm,AD3cm,求CF的长19(5分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统
6、计图和扇形统计图:设销售员的月销售额为x(单位:万元)。销售部规定:当x0,二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k0,k0,-=0,二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x2时,二次函数值y4k0,故C选项符合题意;D、由一次函数图象可知,k0,k0,-=0,二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x2时,二次函数值y4k0,故D选项不合题意;故选:C【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两
7、图象的交点的位置等5、B【解析】解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B6、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对应的原方程的根【详解】去分母,将原方程两边同乘x(x2),整理得2x23x+(3a)=1方程的根的情况有两种:(1)方程有两个相等的实数根,即=932(3a)=1解得a=当a=时,解方程2x23x+(
8、+3)=1,得x1=x2=(2)方程有两个不等的实数根,而其中一根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原方程的唯一根(ii)当x=2时,代入式,得2323+(3a)=1,即a=5当a=5时,解方程2x23x2=1,x1=2,x2= x1是增根,故x=为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到
9、一个含有字母的一元二次方程,所以要分情况进行讨论理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键7、C【解析】设B(,2),由翻折知OC垂直平分AA,AG2EF,AG2AF,由勾股定理得OC,根据相似三角形或锐角三角函数可求得A(,),根据反比例函数性质kxy建立方程求k【详解】如图,过点C作CDx轴于D,过点A作AGx轴于G,连接AA交射线OC于E,过E作EFx轴于F,设B(,2),在RtOCD中,OD3,CD2,ODC90,OC,由翻折得,AAOC,AEAE,sinCOD,AE,OAE+AOE90,OCD+AOE90,OAEOCD,sinOAEsinOCD,EF
10、,cosOAEcosOCD,EFx轴,AGx轴,EFAG,A(,),k0,故选C【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A的坐标8、B【解析】把代入方程组得:,解得:,所以a2b=2()=2.故选B.9、B【解析】根据圆的半径相等可知AB=AC,由等边对等角求出ACB,再由平行得内错角相等,最后由平角180可求出1.【详解】根据题意得:AB=AC,ACB=ABC=67,直线l1l2,2=ABC=67,1+ACB+2=180,ACB=180-1-ACB=180-67-67=46故选B【点睛】
11、本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.10、C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据垂径定理求得BD,然后根据勾股定理求得即
12、可【详解】解:ODBC,BD=CD=BC=3,OB=AB=5,在RtOBD中,OD=1故答案为1【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键12、.【解析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可【详解】设这两天此股票股价的平均增长率为x,由题意得(110%)(1+x)21故答案为:(110%)(1+x)21【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,
13、则经过两次变化后的数量关系为13、6【解析】点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当O与M外切时,AB最小,根据条件求出AO即可求解;【详解】解:点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当O与M外切时,AB最小,M的半径为2,圆心M(3,4),PM5,OA3,AB6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键14、1(a+1)1(a1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式1(a41a1+1)1(a11)11(a+1)1(a1)1,故答案为:1(a+1)1(a1)1【点睛】本题主要考查提取
14、公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式15、1【解析】易得:ABMOCM,利用相似三角形的相似比可得出小明的影长【详解】解:根据题意,易得MBAMCO,根据相似三角形的性质可知 ,即,解得AM=1m则小明的影长为1米故答案是:1【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长16、1【解析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可【详解】点A(a,3)与点B(4,b)关于原点对称,a=4,b=3,
15、a+b=1,故选D【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.17、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3由翻折的性质,得BE=BE=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长为36或故答案为36或考点
16、:3翻折变换(折叠问题);3分类讨论三、解答题(共7小题,满分69分)18、(1)见解析,(2)CFcm.【解析】(1)要求证:BF=BC只要证明CFB=FCB就可以,从而转化为证明BCE=BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角BCD中,根据三角形的面积等于BDCE=BCDC,就可以求出CE的长要求CF的长,可以在直角CEF中用勾股定理求得其中EF=BF-BE,BE在直角BCE中根据勾股定理就可以求出,由此解决问题【详解】证明:(1)四边形ABCD是矩形,BCD90,CDB+DBC90CEBD,DBC+ECB90ECBCDBCFBC
17、DB+DCF,BCFECB+ECF,DCFECF,CFBBCFBFBC(2)四边形ABCD是矩形,DCAB4(cm),BCAD3(cm)在RtBCD中,由勾股定理得BD又BDCEBCDC,CEBEEFBFBE3CFcm【点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题19、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.【解析】(1) 根据称职的人数及其所占
18、百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 (2) 根据中位数和众数的定义求解可得;(3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 【详解】(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),总人数为:2050%=40(人),不称职”百分比:a=440=10%,“基本称职”百分比:b=1040=25%,“优秀”百分比:d=1-10%-25%-50%=15%,“优秀”人数为:4015%=
19、6(人),得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.“称职”和“优秀”的销售员月销售额的中位数为:22万,要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【点睛】考查频数分布直方图、 扇形统计图、 中位数、 众数等知识,
20、解题的关键是灵活运用所学知识解决问题.20、(1)见解析;(2)AB4【解析】(1)过点B作BFCE于F,根据同角的余角相等求出BCF=D,再利用“角角边”证明BCF和CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长【详解】(1)证明:过点B作BHCE于H,如图1CEAD,BHCCED90,1D90BCD90,1290,2D又BCCDBHCCED(AAS)BHCEBHCE,CEAD,A90
21、,四边形ABHE是矩形,AEBHAECE(2)四边形ABHE是矩形,ABHE在RtCED中,设DEx,CE3x,x2DE2,CE3CHDE2ABHE324【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键21、则不等式组的解集是1x3,不等式组的解集在数轴上表示见解析.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集【详解】解不等式得:x1,解不等式得:x3,则不等式组的解集是:1x3,不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大
22、取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.22、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90,3B=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作
23、图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键23、(1)10;(2)EFC=72【解析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=118+9=10;(2)由折叠得:EFM=EFC,EFM=2BFM,设EFM=EFC=x,则有BFM=x,MFB+MFE+EFC=180,x+x+x=180,解得:x=72,则EFC=72【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握
24、实数的运算法则及平行线的性质.24、(),PA4;(),【解析】()易得OAC是等边三角形即AOC=60,又由PC是O的切线故PCOC,即OCP=90可得P的度数,由OC=4可得PA的长度()由()知OAC是等边三角形,易得APC=45;过点C作CDAB于点D,易得AD=AO=CO,在RtDOC中易得CD的长,即可求解【详解】解:()AB是O的直径,OA是O的半径.OAC=60,OA=OC,OAC是等边三角形.AOC=60.PC是O的切线,OC为O的半径,PCOC,即OCP=90P=30.PO=2CO=8.PA=PO-AO=PO-CO=4.()由()知OAC是等边三角形,AOC=ACO=OAC=60AQC=30.AQ=CQ,ACQ=QAC=75ACQ-ACO=QAC-OAC=15即QCO=QAO=15.APC=AQC+QAO=45.如图,过点C作CDAB于点D.OAC是等边三角形,CDAB于点D,DCO=30,AD=AO=CO=2.APC=45,DCQ=APC=45PD=CD在RtDOC中,OC=4,DCO=30,OD=2,CD=2PD=CD=2AP=AD+DP=2+2【点睛】此题主要考查圆的综合应用