《2023届江西省上饶市婺源县中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江西省上饶市婺源县中考数学猜题卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A36B54C72D1082五个新篮球的质量(单位:克)分别是+5、3.5、+0.7、2.5、0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数仅从轻重的角度看,最接近标准的篮球的质量是()A2.5B0.6C+0.7D+53如图,已
2、知OP平分AOB,AOB60,CP2,CPOA,PDOA于点D,PEOB于点E如果点M是OP的中点,则DM的长是()A2BCD24下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个 B2个 C3个 D4个5抛物线ymx28x8和x轴有交点,则m的取值范围是()Am2Bm2Cm2且m0Dm2且m06如图,等边ABC的边长为1cm,D、E分别AB、AC是上的点,将ADE沿直线DE折叠,点A落在点A处,且点A在ABC外部,则阴影部分的周长为()cmA1B2C3D47下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()ABCD8如图,为等边三角形,要在外部取一点,使得和全等
3、,下面是两名同学做法:( )甲:作的角平分线;以为圆心,长为半径画弧,交于点,点即为所求;乙:过点作平行于的直线;过点作平行于的直线,交于点,点即为所求A两人都正确B两人都错误C甲正确,乙错误D甲错误,乙正确9如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )A5B6C7D910如图,已知ABCD,ADCD,140,则2的度数为()A60B65C70D75二、填空题(本大题共6个小题,每小题3分,共18分)11关于 x 的方程 ax=x+2(a1) 的解是_.12以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB、CD 分别表示一楼、二楼
4、地面的水平,ABC=150,BC 的长是 8m,则乘电梯次点 B 到点 C 上升的高度 h 是_m(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_边形13如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_14如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积_m115如图,ABC中,点D、E分别在边AB、BC上,DEAC,若DB=4,AB=6,BE=3,则EC的长是_16分解因式6xy29x2yy3 = _.三、解答题(共8题,共72分)17(8分)解方程:18(
5、8分)如图,在ABC中,AB=AC,AE是角平分线,BM平分ABC交AE于点M,经过B、M两点的O交BC于点G,交AB于点F,FB恰为O的直径(1)判断AE与O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求O的半径19(8分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC点P是该抛物线上一动点,设点P的横坐标为m(m4)(1)求该抛物线的表达式和ACB的正切值;(2)如图2,若ACP=45,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PMCD,垂足为M,直线MN与x
6、轴交于点Q,试判断四边形ADMQ的形状,并说明理由20(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高21(8分)已知,关于x的方程x2mx+m210,(1)不解方程,判断此方程根的情况;(2)若x2是该方程的一个根,求m的值22(10分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发
7、价元千克2040零售价元千克2650他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?23(12分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是 人;(2)图2中是 度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法
8、或树状图的方法求出选中小亮A的概率24先化简,再求值:(-),其中参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是=72度,故选C2、B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,53.52.50.70.6,最接近标准的篮球的质量是-0.6,故选B【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键3、C【解析】由OP平分AOB,AOB=60,CP=2,CPOA,易
9、得OCP是等腰三角形,COP=30,又由含30角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长【详解】解:OP平分AOB,AOB=60,AOP=COP=30,CPOA,AOP=CPO,COP=CPO,OC=CP=2,PCE=AOB=60,PEOB,CPE=30,CE=CP=1,PE=,OP=2PE=2,PDOA,点M是OP的中点,DM=OP=故选C考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理4、C【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图
10、形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、C【解析】根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:抛物线和轴有交点, ,解得:且故选【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键6、C【解析】由题意得到DADA,EAEA,经分析判断得到阴影部分的周长等于ABC的周长即可解决问题【详解
11、】如图,由题意得:DADA,EAEA,阴影部分的周长DAEADBCEBGGFCF(DABD)(BGGFCF)(AECE)ABBCAC1113(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.7、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C考点:中心对称图形的概念8、A【解析】根据题意先画出相应的图形,然后进行推理论证即可得出结论【详解】甲的作法如图一:为等边三角形,AD是的角平分线 由甲的作法可知, 在和中, 故甲的作法正确;乙的作法如图二: 在和中, 故乙的
12、作法正确;故选:A【点睛】本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键9、B【解析】直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案【详解】一组数据1,7,x,9,5的平均数是2x,解得:,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1故选B【点睛】此题主要考查了中位数以及平均数,正确得出x的值是解题关键10、C【解析】由等腰三角形的性质可求ACD70,由平行线的性质可求解【详解】ADCD,140,ACD70,ABCD,2ACD70,故选:C【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题二、填空题(本大题共6个小题,每
13、小题3分,共18分)11、【解析】分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案详解:移项,得:axx=1,合并同类项,得:(a1)x=1a1,a10,方程两边都除以a1,得:x=故答案为x=点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键12、4 8 【解析】(1)先求出斜边的坡角为30,再利用含30的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)180,外角度数为故可列出方程求解.【详解】(1)ABC=150,斜面BC的坡角为30,h=4m(2)设这个多边形边上为n,则内角和为(n-2)180,
14、外角度数为依题意得解得n=8故为八边形.【点睛】此题主要考查含30的直角三角形与多边形的内角和计算,解题的关键是熟知含30的直角三角形的性质与多边形的内角和公式.13、1【解析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在RtABC中,由勾股定理:x2=(8-x)2+22,解得:x=,4x=1,即菱形的最大周长为1cm故答案是:1【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程14、2【解析】设与墙平行的一边长为xm,则另一面为 ,其面积=,最大面积为 ;即最大面积是2m1故答案是2【点
15、睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单15、【解析】由ABC中,点D、E分别在边AB、BC上,DEAC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案【详解】解:DEAC,DB:AB=BE:BC,DB=4,AB=6,BE=3,4:6=3:BC,解得:BC=,EC=BCBE=3=故答案为【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的
16、一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例16、y(3xy)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy29x2yy3 =-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.三、解答题(共8题,共72分)17、x=-4是方程的解【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得
17、到分式方程的解【详解】x=-4,当x=-4时,x=-4是方程的解【点睛】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根18、(1)AE与O相切理由见解析.(2)2.1【解析】(1)连接OM,则OM=OB,利用平行的判定和性质得到OMBC,AMO=AEB,再利用等腰三角形的性质和切线的判定即可得证;(2)设O的半径为r,则AO=12r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证AOMABE,根据相似三角形的性质即可求解.【详解】解:(1)AE与O相切理由如下:连接OM,则OM=OB,OMB=OB
18、M,BM平分ABC,OBM=EBM,OMB=EBM,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90,AMO=90,OMAE,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=6,cosC=,BE=3,cosABC=,在ABE中,AEB=90,AB=12,设O的半径为r,则AO=12r,OMBC,AOMABE,=,解得:r=2.1,O的半径为2.119、(1)y=x23x+1;tanACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.【解析】(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y
19、=x2-3x+1,作BGCA,交CA的延长线于点G,证GABOAC得=,据此知BG=2AG在RtABG中根据BG2+AG2=AB2,可求得AG=继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;(2)作BHCD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h在RtABK中,由勾股定理求得h=,据此求得点K(1,)待定系数法求出直线CK的解析式为y=-x+1设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解解之求得x的值即可
20、得出答案;(3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0)及PH=m2-3m+1),OH=m,AH=m-2,MH=1当1m6时,由OANHAP知=据此得ON=m-1再证ONQHMQ得=据此求得OQ=m-1从而得出AQ=DM=6-m结合AQDM可得答案当m6时,同理可得【详解】解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,解得:;该抛物线的解析式为y=x23x+1,过点B作BGCA,交CA的延长线于点G(如图1所示),则G=90COA=G=90,CAO=BAG,GABOAC=2BG=2AG,在RtABG中,BG2+AG2=AB
21、2,(2AG)2+AG2=22,解得: AG=BG=,CG=AC+AG=2+=在RtBCG中,tanACB(2)如图2,过点B作BHCD于点H,交CP于点K,连接AK易得四边形OBHC是正方形应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HBKB=1h,AK=OA+HK=2+(1h)=6h,在RtABK中,由勾股定理,得AB2+BK2=AK2,22+h2=(6h)2解得h=,点K(1,),设直线CK的解析式为y=hx+1,将点K(1,)代入上式,得=1h+1解得h=,直线CK的解析式为y=x+1,设点P的坐标为(x,y),则x是方程x23x+1=x+1的一个解,将方
22、程整理,得3x216x=0,解得x1=,x2=0(不合题意,舍去)将x1=代入y=x+1,得y=,点P的坐标为(,),m=;(3)四边形ADMQ是平行四边形理由如下:CDx轴,yC=yD=1,将y=1代入y=x23x+1,得1=x23x+1,解得x1=0,x2=6,点D(6,1),根据题意,得P(m, m23m+1),M(m,1),H(m,0),PH=m23m+1,OH=m,AH=m2,MH=1,当1m6时,DM=6m,如图3,OANHAP,=,ON=m1,ONQHMQ,OQ=m1,AQ=OAOQ=2(m1)=6m,AQ=DM=6m,又AQDM,四边形ADMQ是平行四边形当m6时,同理可得:四
23、边形ADMQ是平行四边形综上,四边形ADMQ是平行四边形【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点20、树高为 5.5 米【解析】根据两角相等的两个三角形相似,可得 DEFDCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 ABAC+BC ,即可求出树高.【详解】DEFDCB90,DD, DEFDCB ,DE0.4m,EF0.2m,CD8m, CB4(m),ABAC+BC1.5+45.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关
24、键是从实际问题中整理出相似三角形的模型21、(1)证明见解析;(2)m=2或m=1【解析】(1)由=(-m)2-41(m2-1)=40即可得;(2)将x=2代入方程得到关于m的方程,解之可得【详解】(1)=(m)241(m21)=m2m2+4=40,方程有两个不相等的实数根;(2)将x=2代入方程,得:42m+m21=0,整理,得:m28m+12=0,解得:m=2或m=1【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值22、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱【解析】设购进
25、猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;根据利润销售收入成本,即可求出结论【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:答:购进猕猴桃20千克,购进芒果30千克元答:如果猕猴桃和芒果全部卖完,他能赚420元钱【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算23、(1)40;(2)54,补图见解析;(3)330;(4).【解析】(1)根据由自主学习的时间是1小时的人数占30%,可求得本次调查的学
26、生人数;(2),由自主学习的时间是0.5小时的人数为4035%=14;(3)求出这40名学生自主学习时间不少于1.5小时的百分比乘以600即可;(4)根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案【详解】(1)自主学习的时间是1小时的有12人,占30%,1230%=40,故答案为40; (2),故答案为54;自主学习的时间是0.5小时的人数为4035%=14;补充图形如图: (3)600=330; 故答案为330;(4)画树状图得:共有12种等可能的结果,选中小亮A的有6种可能,P(A)=24、【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案详解:原式= 将原式=点睛:本题主要考查的是分式的化简求值,属于简单题型解决这个问题的关键就是就是将括号里面的分式进行化成同分母