《2023届江苏省无锡市锡中市级名校中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省无锡市锡中市级名校中考数学全真模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列因式分解正确的是ABCD2如图,已知直线 PQMN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使ABC是等腰三角形,则这样的 C 点有( )A3 个 B4 个 C7 个 D8 个
2、3如图,二次函数y=ax2+bx+c(a0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中1x10,1x22,下列结论:4a+2b+c0,2a+b0,b2+8a4ac,a1,其中结论正确的有()A1个B2个C3个D4个4在平面直角坐标系xOy中,将点N(1,2)绕点O旋转180,得到的对应点的坐标是( )A(1,2)B(1,2)C(1,2)D(1,2)5如图,小岛在港口P的北偏西60方向,距港口56海里的A处,货船从港口P出发,沿北偏东45方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A7海里/时B7海里/时C7海里/时D28海里/时6一元二次方程4
3、x22x+=0的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断7如图,在ABC中,B46,C54,AD平分BAC,交BC于D,DEAB,交AC于E,则CDE的大小是()A40B43C46D548将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()ABCD9已知一元二次方程有一个根为2,则另一根为A2B3C4D810一元二次方程x2-2x=0的解是( )Ax1=0,x2=2Bx1=1,x2=2Cx1=0,x2=-2Dx1=1,x2=-2二、填空题(本大题共6个小题,每小题3分,共18分)11若a2+32b,则a32ab+3a_12如图EDB由A
4、BC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_13如图,中,平分,与相交于点,则的长等于_.14如图1,在R tABC中,ACB=90,点P以每秒2cm的速度从点A出发,沿折线ACCB运动,到点B停止过点P作PDAB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示当点P运动5秒时,PD的长的值为_15如图,AB为0的弦,AB=6,点C是0上的一个动点,且ACB=45,若点M、N分别是AB、BC的中点,则MN长的最大值是_ 16不等式的解集是_三、解答题(共8题,共72分)17(8分)鲜丰水果店计划用元/盒的
5、进价购进一款水果礼盒以备销售.据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.18(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调
6、查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数19(8分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取
7、到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率20(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米如果2017年仍保持相同的年平均增
8、长率,请你预测2017年该市能否完成计划目标.21(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点下图中的P,Q两点即为同族点 (1)已知点A的坐标为(3,1),在点R(0,4),S(2,2),T(2,3)中,为点A的同族点的是 ;若点B在x轴上,且A,B两点为同族点,则点B的坐标为 ;(2)直线l:y=x3,与x轴交于点C,与y轴交于点D,M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N
9、两点为同族点,直接写出m的取值范围22(10分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2
10、)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年13月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中
11、搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率23(12分)某地铁站口的垂直截图如图所示,已知A=30,ABC=75,AB=BC=4米,求C点到地面AD的距离(结果保留根号)24如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若PAC为直角三角形,直接写出此时点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】直接利用提取公
12、因式法以及公式法分解因式,进而判断即可【详解】解:A、,无法直接分解因式,故此选项错误;B、,无法直接分解因式,故此选项错误;C、,无法直接分解因式,故此选项错误;D、,正确故选:D【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键2、D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析解:使ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个所以共8个故选
13、D点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏3、D【解析】由抛物线的开口向下知a0,对称轴为x= 1,a0,2a+b0,当x=2时,y=4a+2b+c2,4ac4ac,a+b+c=2,则2a+2b+2c=4,4a+2b+c0,ab+c0.由,得到2a+2c2,由,得到2ac4,4a2c8,上面两个相加得到6a6,a15移项得,-2x15-1合并同类项得,-2x14系数化为1,得x-7.故答案为x-7.【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的
14、两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变三、解答题(共8题,共72分)17、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.【解析】(1)设每盒售价应为x元,根据月销量=980-30超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每盒利润销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论【详解】解:设每盒售价元.依题意得:解得:答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元依题意: 令:化简:解得:(舍),答:的值为.
15、【点睛】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.18、(1)100;(2)作图见解析;(3)1【解析】试题分析:(1)根据百分比= 计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=3030%=100,故答案为100;(2)其他有10010%=10人,打球有100302010=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为200040%=1人19、(1);(2)【解析】(1)由题意知,共有4种等可能的结果,而取到红枣
16、粽子的结果有2种则P(恰好取到红枣粽子)=.(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=.考点:列表法与树状图法;概率公式20、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标【解析】试题分析:(
17、1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183(1+30%)=1537.9(万平方米),1537.91500,2017年该市能
18、完成计划目标【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解21、(1)R,S;(,0)或(4,0);(2);m或m1【解析】(1)点A的坐标为(2,1),2+1=4,点R(0,4),S(2,2),T(2,2)中,0+4=4,2+2=4,2+2=5,点A的同族点的是R,S;故答案为R,S;点B在x轴上,点B的纵坐标为0,设B(x,0),则|x|=4,x=4,B(4,0)或(4,0);故答案为(4,0)或(4,0);(2)由题意,直线与x轴交于C(2,0),与y轴交于D(0,) 点M在线段CD上,设其坐标为(x,y),则
19、有:,且点M到x轴的距离为,点M到y轴的距离为,则点M的同族点N满足横纵坐标的绝对值之和为2即点N在右图中所示的正方形CDEF上点E的坐标为(,0),点N在直线上, 如图,设P(m,0)为圆心, 为半径的圆与直线y=x2相切,PC=2,OP=1,观察图形可知,当m1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m也满足条件,满足条件的m的范围:m或m122、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;(4).【解析】(1)认真读题,找到题目中的相关信息量,列表统计即可;(2)分别求出“混动乘用”和“纯电动商用”的圆心
20、角的度数,然后补扇形图即可;(3)根据图表信息写出一个符合条件的信息即可;(4)利用树状图确定求解概率.【详解】(1)统计表如下: 2017年新能源汽车各类型车型销量情况(单位:万辆)类型纯电动混合动力总计新能源乘用车46.811.157.9新能源商用车18.41.419.8(2)混动乘用:100%14.3%,14.3%36051.5,纯电动商用:100%23.7%,23.7%36085.3,补全图形如下:(3)总销量越高,其个人购买量越大(4)画树状图如下:一共有12种等可能的情况数,其中抽中1、4的情况有2种,小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=【点睛】此题主要考查了数据的
21、分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.23、C点到地面AD的距离为:(2+2)m【解析】直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案【详解】过点B作BEAD于E,作BFAD,过C作CFBF于F,在RtABE中,A=30,AB=4m,BE=2m,由题意可得:BFAD,则FBA=A=30,在RtCBF中,ABC=75,CBF=45,BC=4m,CF=sin45BC= C点到地面AD的距离为:【点睛】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.24、(1)(4,6);y=1x18x+6(1
22、);(3)点P的坐标为(3,5)或()【解析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值(1)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.【
23、详解】解:(1)B(4,m)在直线y=x+1上,m=4+1=6,B(4,6),故答案为(4,6);A(,),B(4,6)在抛物线y=ax1+bx+6上,解得,抛物线的解析式为y=1x18x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n18n+6),PC=(n+1)(1n18n+6),=1n1+9n4,=1(n)1+,PC0,当n=时,线段PC最大且为(3)PAC为直角三角形,i)若点P为直角顶点,则APC=90由题意易知,PCy轴,APC=45,因此这种情形不存在;ii)若点A为直角顶点,则PAC=90如图1,过点A(,)作ANx轴于点N,则ON=,AN=过点A作AM直线
24、AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,MN=AN=,OM=ON+MN=+=3,M(3,0)设直线AM的解析式为:y=kx+b,则:,解得,直线AM的解析式为:y=x+3 又抛物线的解析式为:y=1x18x+6 联立式,解得:或(与点A重合,舍去),C(3,0),即点C、M点重合当x=3时,y=x+1=5,P1(3,5);iii)若点C为直角顶点,则ACP=90y=1x18x+6=1(x1)11,抛物线的对称轴为直线x=1如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,)当x=时,y=x+1=P1(,)点P1(3,5)、P1(,)均在线段AB上,综上所述,PAC为直角三角形时,点P的坐标为(3,5)或(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.