《2023届辽宁省朝阳市建平县重点中学中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届辽宁省朝阳市建平县重点中学中考数学全真模拟试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是ABCD2关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-3下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所
2、对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径4二次函数y=ax2+bx+c(a0)的图象如图,下列四个结论:4a+c0;m(am+b)+ba(m1);关于x的一元二次方程ax2+(b1)x+c=0没有实数根;ak4+bk2a(k2+1)2+b(k2+1)(k为常数)其中正确结论的个数是()A4个B3个C2个D1个5如图,二次函数y=ax1+bx+c(a0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC则下列结论:abc0;9a+3b+c0;c1;关于x的方程ax1+bx+c=0(a0)有一个根为
3、;抛物线上有两点P(x1,y1)和Q(x1,y1),若x11x1,且x1+x14,则y1y1其中正确的结论有()A1个B3个C4个D5个6若等式x2+ax+19(x5)2b成立,则 a+b的值为()A16B16C4D47小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()ABCD8如图,一次函数y1x与二次函数y2ax2bxc图象相交于P、Q两点,则函数yax2(b1)xc的图象可能是( )ABCD9关于x的一元二次方程x22x+k+20有实数根,则k的取值范围在数轴
4、上表示正确的是( )ABCD10某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11若xay与3x2yb是同类项,则ab的值为_12若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=_13将一副直角三角板如图放置,使含30角的三角板的短直角边和含45角的三角板的一条直角边重合,则1的度数为_度14如图,在ABC中,ABAC,A36, BD平分ABC交AC于点D,DE平分BDC交BC于点E,则 15若反比例函数y=
5、的图象位于第一、三象限,则正整数k的值是_16已知a1,a2,a3,a4,a5,则an_(n为正整数)三、解答题(共8题,共72分)17(8分)如图,AB为O的直径,点D、E位于AB两侧的半圆上,射线DC切O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且AED45(1)求证:CDAB;(2)填空:当DAE 时,四边形ADFP是菱形;当DAE 时,四边形BFDP是正方形18(8分)如图,在边长为1的小正方形组成的方格纸上,将ABC绕着点A顺时针旋转90画出旋转之后的ABC;求线段AC旋转过程中扫过的扇形的面积19(8分)小雁
6、塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45,接着在建筑物顶端C处测得塔顶端A的仰角为37.5已知ABBD,CDBD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.50.61,cos37.50.79,tan37.50.77)20(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通
7、过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了_名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21(8分)如果想毁掉一个孩子,就给他一部手机!这是2017年微信圈一篇热传的文章国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使
8、用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图,的统计图,已知“查资料”的人数是40人请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数22(10分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310日销售量(n件)198196194?该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1x5050x90销售价格(元/
9、件)x+60100 (1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量(每件销售价格每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.23(12分)如图,已知,等腰RtOAB中,AOB=90,等腰RtEOF中,EOF=90,连结AE、BF求证:(1)AE=BF;(2)AEBF24如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64,在斜坡上的点D处测得楼顶B的仰
10、角为45,其中A、C、E在同一直线上求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin640.9,tan642)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.2、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:
11、B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小3、D【解析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选:D【点睛】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键4、D【解析】因为二次函数的对称轴是直线x=1,由图象可得左交点的横坐标大于3
12、,小于2,所以=1,可得b=2a,当x=3时,y0,即9a3b+c0,9a6a+c0,3a+c0,a0,4a+c0,所以选项结论正确;抛物线的对称轴是直线x=1,y=ab+c的值最大,即把x=m(m1)代入得:y=am2+bm+cab+c,am2+bmab,m(am+b)+ba,所以此选项结论不正确;ax2+(b1)x+c=0,=(b1)24ac,a0,c0,ac0,4ac0,(b1)20,0,关于x的一元二次方程ax2+(b1)x+c=0有实数根;由图象得:当x1时,y随x的增大而减小,当k为常数时,0k2k2+1,当x=k2的值大于x=k2+1的函数值,即ak4+bk2+ca(k2+1)2
13、+b(k2+1)+c,ak4+bk2a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D5、D【解析】根据抛物线的图象与系数的关系即可求出答案【详解】解:由抛物线的开口可知:a0,由抛物线与y轴的交点可知:c0,由抛物线的对称轴可知:0,b0,abc0,故正确;令x=3,y0,9a+3b+c0,故正确;OA=OC1,c1,故正确;对称轴为直线x=1,=1,b=4aOA=OC=c,当x=c时,y=0,ac1bc+c=0,acb+1=0,ac+4a+1=0,c=,设关于x的方程ax1+bx+c=0(a0)有一个根为x,xc=4,x=c+4=,故正确;x11x1,
14、P、Q两点分布在对称轴的两侧,1x1(x11)=1x1x1+1=4(x1+x1)0,即x1到对称轴的距离小于x1到对称轴的距离,y1y1,故正确故选D【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定本题属于中等题型6、D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D点睛:此题考查了完全平方公式,熟练掌
15、握完全平方公式是解本题的关键7、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.8、A【解析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系
16、数的关系得出函数y=ax2+(b-1)x+c的对称轴x=-0,即可进行判断【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,x=ax2+bx+c,ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,方程ax2+(b-1)x+c=0有两个正实数根函数y=ax2+(b-1)x+c与x轴有两个交点,又-0,a0-=-+0函数y=ax2+(b-1)x+c的对称轴x=-0,A符合条件,故选A9、C【解析】由一元二次方程有实数根可知0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围【详解】关于x的一元二次方程
17、x22x+k+2=0有实数根,=(2)24(k+2)0,解得:k1,在数轴上表示为:故选C.【点睛】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.10、A【解析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可【详解】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,故选:A【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】试题解析:xay与3x2yb是同类
18、项,a=2,b=1,则ab=2.12、【解析】因为方程有实根,所以0,配方整理得(a+2b)2+(a1)20,再利用非负性求出a,b的值即可.【详解】方程有实根,0,即=4(1+a)24(3a2+4ab+4b2+2)0,化简得:2a2+4ab+4b22a+10,(a+2b)2+(a1)20,而(a+2b)2+(a1)20,a+2b=0,a1=0,解得a=1,b=,=.故答案为.13、1【解析】根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解【详解】360,445,15180341故答案为:1【点睛】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180,是
19、解题的关键14、【解析】试题分析:因为ABC中,ABAC,A36所以ABC=ACB=72因为BD平分ABC交AC于点D所以ABD=CBD=36=A因为DE平分BDC交BC于点E所以CDE=BDE=36=A所以AD=BD=BC根据黄金三角形的性质知,,,所以考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36,每个底角为72.它的腰与它的底成黄金比当底角被平分时,角平分线分对边也成黄金比,15、1【解析】由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可【详解】解:反比例函数的图象在一、三象限,2k0,即k2又k是正整数,k的值是:1故答案为:1【点睛】本题考查
20、了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限16、.【解析】观察分母的变化为n的1次幂加1、2次幂加1、3次幂加1,n次幂加1;分子的变化为:3、5、7、92n+1【详解】解:a1=,a2=,a3=,a4=,a5=,an,故答案为:【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案三、解答题(共8题,共72分)17、(1)详见解析;(2)67.5;90【解析】(1)要证明CDAB,只要证明ODFAOD即可,根据题目中的条件可以证明ODFAOD,从而可以解答本题;(2)根据四边形ADFP是菱
21、形和菱形的性质,可以求得DAE的度数;根据四边形BFDP是正方形,可以求得DAE的度数【详解】(1)证明:连接OD,如图所示,射线DC切O于点D,ODCD,即ODF90,AED45,AOD2AED90,ODFAOD,CDAB;(2)连接AF与DP交于点G,如图所示,四边形ADFP是菱形,AED45,OAOD,AFDP,AOD90,DAGPAG,AGE90,DAO45,EAG45,DAGPEG22.5,EADDAG+EAG22.5+4567.5,故答案为:67.5;四边形BFDP是正方形,BFFDDPPB,DPBPBFBFDFDP90,此时点P与点O重合,此时DE是直径,EAD90,故答案为:9
22、0【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答18、.(1)见解析(2)【解析】(1)根据网格结构找出点B、C旋转后的对应点B、C的位置,然后顺次连接即可.(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【详解】解:(1)ABC如图所示:(2)由图可知,AC=2,线段AC旋转过程中扫过的扇形的面积.19、43米【解析】作CEAB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x根据tanACE=,列出方程即可解决问题【详解】解:如图,作CEAB于E则四边形BDCE是
23、矩形,BE=CD=9.982米,设AB=x在RtABD中,ADB=45,AB=BD=x,在RtAEC中,tanACE=tan37.50.77,=0.77,解得x43,答:“小雁塔”的高AB的长度约为43米【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题20、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角
24、的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不
25、同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.21、(1)35%,126;(2)见解析;(3)1344人【解析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果【详解】(1)根据题意得:1(40%+18%+7%)35%,则“玩游戏”对应的圆心角度数是36035%126,故答案为35%,126;(2)根据题意得:4040%100(人),3小时以上的人数为100(2+16+18+32)32(人),补全图形如下:;(3)根据
26、题意得:21001344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.22、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1x50时,y=2x2+160x+4000;当50x90时,y=120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元试题解析:解:(1)n与x成
27、一次函数,设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-210+200=1(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1x50时,y=-2x2+160x+4000=-2(x-40)2+7200,-20,当x=40时,y有最大值,最大值是7200;当50x90时,y=-120x+12000,-1200,y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元
28、;(3)在该产品销售的过程中,共有46天销售利润不低于5400元23、见解析【解析】(1)可以把要证明相等的线段AE,CF放到AEO,BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去BOE的结果,所以相等,由此可以证明AEOBFO;(2)由(1)知:OAC=OBF,BDA=AOB=90,由此可以证明AEBF【详解】解:(1)证明:在AEO与BFO中,RtOAB与RtEOF等腰直角三角形,AO=OB,OE=OF,AOE=90-BOE=BOF,AEOBFO,AE=BF;( 2)延长AE交BF于D,交OB于C,则BCD=ACO由(1)知:OA
29、C=OBF,BDA=AOB=90,AEBF24、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度试题解析:(1)在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,设DE=5x米,则EC=12x米,(5x)2+(12x)2=132,解得:x=1,5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知BDH=45,BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,tan64=,2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米