《2023届江西省南昌市进贤县达标名校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江西省南昌市进贤县达标名校中考二模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若2mn6,则代数式m-n+1的值为()A1B2C3D42O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则n的值为( )A3B4C6D83对于代数式ax2+bx+c(a0),下列说法正确的是( ) 如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则a+bx
2、+c=a(x-p)(x-q)存在三个实数mns,使得am2+bm+c=an2+bn+c=as2+bs+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+cABCD4一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1关于这组数据说法错误的是()A极差是20B中位数是91C众数是1D平均数是915实数5.22的绝对值是()A5.22B5.22C5.22D6菱形的两条对角线长分别是6cm和8cm,则它的面积是()A6cm2B12cm2C24cm2D48cm27如图,点A,B在反比
3、例函数的图象上,点C,D在反比例函数的图象上,AC/BD/y轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为( )A4B3C2D8如图1,在矩形ABCD中,动点E从A出发,沿ABBC方向运动,当点E到达点C时停止运动,过点E做FEAE,交CD于F点,设点E运动路程为x,FCy,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()AB5C6D9在平面直角坐标系中,若点A(a,b)在第一象限内,则点B(a,b)所在的象限是()A第一象限 B第二象限 C第三象限 D第四象限10有一圆形苗圃如图1所示,中间有两条交叉
4、过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC二、填空题(共7小题,每小题3分,满分21分)11点A(3,y1),B(2,y2),C(3,y3)在抛物线y=2x24x+c上,则y1,y2,y3的大小关系是_12如图,正ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留);
5、若 A 点落在圆上记做第 1 次旋转,将ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转,若此旋转下去,当ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次13如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去,试用图形揭示的规律计算:_14图中圆心角AOB=30,弦CAOB,延长CO与圆交于点D,则BOD= 15的算术平方根是_.16飞机着陆后滑行的距离y(单位:m)
6、关于滑行时间t(单位:s)的函数解析式是y=60t在飞机着陆滑行中,最后4s滑行的距离是_m17如图,A、D是O上的两个点,BC是直径,若D40,则OAC_度三、解答题(共7小题,满分69分)18(10分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE若DE:AC=3:5,求的值19(5分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似
7、,且位似比为2:1,点C2的坐标是 20(8分)解方程:1+21(10分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.求关于的函数关系式;该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.22(10分)老师布置了一个作业,如下:已知:
8、如图1的对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形. 某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.23(12分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.队别平均分中位数方差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%
9、(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由24(14分)解方程组参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】先对m-n+1变形得到(2mn)+1,再将2mn6整体代入进行计算,即可得到答案.【详解】mn+1(2mn)+1当2mn6时,原式6+13+14,故选:D【点睛】本题考查代数式,解题的关键是掌握整体代入法.2、C【解析】根据题意可以求出这个正n边形的中心角是60,即可求出边
10、数.【详解】O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60, n的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.3、A【解析】设 (1)如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故中结论不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故错误;(3)如果ac0,则b2-4ac0,则的图象和x轴必有两个不
11、同的交点,所以此时一定存在两个实数mn,使am2+bm+c0an2+bn+c,故在结论正确;(4)如果ac0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以中结论不一定成立.综上所述,四种说法中正确的是.故选A.4、D【解析】试题分析:因为极差为:178=20,所以A选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;因为1出现了两次,最多,所以众数是1,所以C选项正确;因为,所以D选项错误.故选D考点:众数中位数平均数极差.5、A【解析】根据绝对值的性质进行解答即可【详解】实数5.1的绝对值是5.1故选A【点睛】本题考查的是实数的性质
12、,熟知绝对值的性质是解答此题的关键6、C【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积【详解】根据对角线的长可以求得菱形的面积,根据S=ab=6cm8cm=14cm1故选:C【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.7、B【解析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC/BD/ y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出SOAC,SABD的面积,再根据OAC与ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,A(1,1),把x=
13、2代入得:y=,B(2, ),AC/BD/ y轴,C(1,K),D(2,)AC=k-1,BD=-,SOAC=(k-1)1,SABD= (-)1,又OAC与ABD的面积之和为,(k-1)1 (-)1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.8、B【解析】易证CFEBEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题【详解】若点E在BC上时,如图EFC+AEB90,FEC+EFC90,CFEAEB,在CFE和BEA中,CFEBEA,由二次函数图象对
14、称性可得E在BC中点时,CF有最大值,此时,BECEx,即,当y时,代入方程式解得:x1(舍去),x2,BECE1,BC2,AB,矩形ABCD的面积为25;故选B【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键9、D【解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】点A(a,-b)在第一象限内,a0,-b0,b0,点B(a,b)在第四象限,故选D【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负
15、,第四象限正负10、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、y2y3y1【解析】把点的坐标分别代入抛物线解析式可分别求得y1、y2、y
16、3的值,比较可求得答案【详解】y=2x2-4x+c,当x=-3时,y1=2(-3)2-4(-3)+c=30+c,当x=2时,y2=222-42+c=c,当x=3时,y3=232-43+c=6+c,c6+c30+c,y2y3y1,故答案为y2y3y1【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键12、,1.【解析】首先连接OA、OB、OC,再求出CBC的大小,进而利用弧长公式问题即可解决因为ABC是三边在正方形CBAC上,BC边每12次回到原来位置,201712=1.08,推出当ABC完成第2017次旋转时,BC边共回到原来位置1次.【详解】如图
17、,连接OA、OB、OCOB=OC=,BC=2, OBC是等腰直角三角形,OBC=45;同理可证:OBA=45,ABC=90;ABC=60,ABA=90-60=30,CBC=ABA=30,当点A第一次落在圆上时,则点C运动的路线长为:ABC是三边在正方形CBAC上,BC边每12次回到原来位置,201712=1.08,当ABC完成第2017次旋转时,BC边共回到原来位置1次,故答案为:,1【点睛】本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题13、【解析】结合图形发现计算方法: ,即计算其面
18、积和的时候,只需让总面积减去剩下的面积.【详解】解:原式= 故答案为:【点睛】此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.14、30【解析】试题分析:CAOB,AOB=30,CAO=AOB=30OA=OC,C=OAC=30C和AOD是同弧所对的圆周角和圆心角,AOD=2C=60BOD=6030=3015、3【解析】根据算术平方根定义,先化简,再求的算术平方根.【详解】因为=9所以的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错要熟悉特殊数字0,1,-1的特殊性质16、24【解析】先利
19、用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离.【详解】y=60t=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,当t=20-4=16时,y=576,600-576=24,即最后4s滑行的距离是24m,故答案为24.【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.17、50【解析】根据BC是直径得出BD40,BAC90,再根据半径相等所对应的角相等求出BAO,在直角三角形BAC中即可求出OAC【详解】BC是直径,D40,BD40,B
20、AC90OAOB,BAOB40,OACBACBAO904050故答案为:50【点睛】本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键三、解答题(共7小题,满分69分)18、【解析】根据翻折的性质可得BAC=EAC,再根据矩形的对边平行可得ABCD,根据两直线平行,内错角相等可得DCA=BAC,从而得到EAC=DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到ACF和EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在RtADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然
21、后代入进行计算即可得解【详解】解:矩形沿直线AC折叠,点B落在点E处,CEBC,BACCAE,矩形对边ADBC,ADCE,设AE、CD相交于点F,在ADF和CEF中,ADFCEF(AAS),EFDF,ABCD,BACACF,又BACCAE,ACFCAE,AFCF,ACDE,ACFDEF,设EF3k,CF5k,由勾股定理得CE,ADBCCE4k,又CDDFCF3k5k8k,ABCD8k,AD:AB(4k):(8k)【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出ACF和DEF相似是解题的关键,也是本题的难点19、(1)画图见解析,(
22、2,-2);(2)画图见解析,(1,0); 【解析】(1)将ABC向下平移4个单位长度得到的A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可【详解】(1)如图所示,画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的
23、性质是解本题的关键20、无解【解析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x23xx23x18,解得:x3,经检验x3是增根,分式方程无解【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.21、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2);手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)根据总利润=销售A型手机的利
24、润+销售B型手机的利润即可列出函数关系式;根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,然后分当时,当时,当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)根据题意,得,即.根据题意,得,解得.,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;当时,即手机店购进型手机的数量为满足的
25、整数时,获得利润相同;当时,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.22、(1)能,见解析;(2)见解析.【解析】(1)直接利用菱形的判定方法分析得出答案;(2)直接利用全等三角形的判定与性质得出EO=FO,进而得出答案【详解】解:(1)能;该同学错在AC和EF并不是互相平分的,EF垂直平分AC,但未证明AC垂直平分EF,需要通过证明得出;(2)证明: 四边形ABCD是平行四边形,ADBCFACECAEF是AC的垂直平分线,OAOC在AOF与COE中, ,
26、AOFCOE(ASA)EOFO AC垂直平分EFEF与AC互相垂直平分四边形AECF是菱形【点睛】本题主要考查了平行四边形的性质,菱形的判定,全等三角形的判定与性质,正确得出全等三角形是解题关键23、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.【解析】试题分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可试题解析:(1)根据题意得:解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为=20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差24、【解析】解:由得把代入得把代人得原方程组的解为