2023届福建省龙岩市达标名校中考数学模试卷含解析.doc

上传人:lil****205 文档编号:87840154 上传时间:2023-04-18 格式:DOC 页数:18 大小:817KB
返回 下载 相关 举报
2023届福建省龙岩市达标名校中考数学模试卷含解析.doc_第1页
第1页 / 共18页
2023届福建省龙岩市达标名校中考数学模试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届福建省龙岩市达标名校中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届福建省龙岩市达标名校中考数学模试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在3,0,2, 四个数中,最小的数是(

2、)A3B0C2D2如图,正方形ABCD内接于圆O,AB4,则图中阴影部分的面积是( )ABCD3O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则n的值为( )A3B4C6D84计算2a23a2的结果是( )A5a4B6a2C6a4D5a25已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 + x1 x22 的值为( )A-6B- 3C3D66PM2.5是指大气中直径小于或等于2.5m(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米A25107 B2.5106 C0.25105 D2.5105

3、7将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A向左平移1个单位B向右平移3个单位C向上平移3个单位D向下平移1个单位8如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A8BC4D9如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tanAON的值为()ABCD10下列运算正确的是()A(a2)5=a7 B(x1)2=x21C3a2b3ab2=3 Da2a4=a6二、填空题(共7小题,每小题3分,满分2

4、1分)11如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2OA2=_12如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EMBC交弧BD于点E,则弧BE的长为_13矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分AEF的面积等于_14对于一元二次方程,根的判别式中的表示的数是_15如图AB是直径,C、D、E为圆周上的点,则_16如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_17比较大小:_3(填“”或“”或“”)三、解答题(共7小题,满分

5、69分)18(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:方案一:购买一个文具袋还送1个圆规。方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.设购买面规m个,则选择方案一的总费用为_,选择方案二的总费用为_.若学校购买圆规100个,则选择哪种方案更合算?请说明理由.19(5分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入

6、A种型号B种型号第一周3台5台1800元第二周4台10台3100元 (进价、售价均保持不变,利润销售收入进货成本)求A,B两种型号的电风扇的销售单价若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由20(8分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC中,点O在线段BC上,BAO=30,OAC=75,AO=,BO:CO=1:3,求AB的长经过社团成员讨论发现,过点B作BDAC,交AO的延长线于点D,通过构

7、造ABD就可以解决问题(如图2)请回答:ADB= ,AB= 请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,ACAD,AO=,ABC=ACB=75,BO:OD=1:3,求DC的长21(10分)已知关于x的一元二次方程为常数求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值22(10分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关

8、系进行了探究下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在RtABC中,C=90,AC=BC=6cm,D是线段AB上一动点,射线DEBC于点E,EDF=60,射线DF与射线AC交于点F设B,E两点间的距离为xcm,E,F两点间的距离为ycm(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.34.03.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当DEF为等边三角形时,BE的长度约为

9、cm23(12分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3)(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求ABC的面积24(14分)如图,直线y=x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D(1)求抛物线y=x2+bx+c的解析式(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2x11结合函数的图象,求x3的取值范

10、围;若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据比较实数大小的方法进行比较即可根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小2、B【解析】连接OA、OB,利用正方形的性质得出OA=ABcos45=2,根据阴影部分的面积=SO-S正方形ABCD列式计算可得【详解】解:连接OA、OB,四边

11、形ABCD是正方形,AOB=90,OAB=45,OA=ABcos45=4=2,所以阴影部分的面积=SO-S正方形ABCD=(2)2-44=8-1故选B【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式3、C【解析】根据题意可以求出这个正n边形的中心角是60,即可求出边数.【详解】O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60, n的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.4、D【解析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不

12、变.【详解】2a23a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.5、B【解析】根据根与系数的关系得到x1+x2=1,x1x2=1,再把x12x2+x1x22变形为x1x2(x1+x2),然后利用整体代入的方法计算即可【详解】根据题意得:x1+x2=1,x1x2=1,所以原式=x1x2(x1+x2)=11=1故选B【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程

13、两个为x1,x2,则x1+x2,x1x26、B【解析】由科学计数法的概念表示出0.0000025即可.【详解】0.0000025=2.5106.故选B.【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.7、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x21图象不经过A点,故D符合题意;故选D.8、A【解析】【分析】设,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出【详解】轴,B两点纵坐标相同,设,则,

14、故选A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.9、A【解析】过O作OCAB于C,过N作NDOA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AOOB=ABOC,代入求出OC,根据sin45=,求出ON,在RtNDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tanAON=求出即可【详解】过O作OCAB于C,过N作NDOA于D,N在直线y=x+3上,设N的坐标是(x,x+3),则DN=

15、x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,A(-4,0),B(0,3),即OA=4,OB=3,在AOB中,由勾股定理得:AB=5,在AOB中,由三角形的面积公式得:AOOB=ABOC,34=5OC,OC=,在RtNOM中,OM=ON,MON=90,MNO=45,sin45=,ON=,在RtNDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,N在第二象限,x只能是-,x+3=,即ND=,OD=,tanAON=故选A【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用

16、,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强10、D【解析】根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(ab)2=a22ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可【详解】A、(a2)5=a10,故原题计算错误;B、(x1)2=x22x+1,故原题计算错误;C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;D、a2a4=a6,故原题计算正确;故选:D【点睛】此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算

17、法则二、填空题(共7小题,每小题3分,满分21分)11、1【解析】解:直线y=x+b与双曲线 (x0)交于点P,设P点的坐标(x,y),xy=b,xy=8,而直线y=x+b与x轴交于A点,OA=b又OP2=x2+y2,OA2=b2,OP2OA2=x2+y2b2=(xy)2+2xyb2=1故答案为112、【解析】延长ME交AD于F,由M是BC的中点,MFAD,得到F点为AD的中点,即AF=AD,则AEF=30,得到BAE=30,再利用弧长公式计算出弧BE的长【详解】延长ME交AD于F,如图,M是BC的中点,MFAD,F点为AD的中点,即AF=AD又AE=AD,AE=2AF,AEF=30,BAE=

18、30,弧BE的长=故答案为【点睛】本题考查了弧长公式:l=也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度13、【解析】试题分析:要求重叠部分AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知AEF=CEF,由平行得CEF=AFE,代换后,可知AE=AF,问题转化为在RtABE中求AE因此设AE=x,由折叠可知,EC=x,BE=4x,在RtABE中,AB2+BE2=AE2,即32+(4x)2=x2,解得:x=,即AE=AF=,因此可求得=AFAB=3=考点:翻折变换(折叠问题)14、-5【解析】分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可【

19、详解】解:表示一元二次方程的一次项系数【点睛】此题考查根的判别式,在解一元二次方程时程根的判别式=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值a代表二次项系数,b代表一次项系数,c是常数项15、90【解析】连接OE,根据圆周角定理即可求出答案【详解】解:连接OE,根据圆周角定理可知:C=AOE,D=BOE,则C+D=(AOE+BOE)=90,故答案为:90【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半16、3.【解析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数式表示出AD

20、=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90,ABCD,DEAC,AED90,ADE+DAE90,DAE+ACD90,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.17、.【解析】先利用估值的方法先得到3.4,再进行比较即可.【详解】解:3.4,3.43.3.故答案为:.【点睛】本题考查了实数的比

21、较大小,对进行合理估值是解题的关键.三、解答题(共7小题,满分69分)18、(1)文具袋的单价为15元,圆规单价为3元;(2)方案一总费用为元,方案二总费用为元;方案一更合算.【解析】(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论【详解】(1)设文具袋的单价为x元,圆规单价为y元。由题意得解得答:文具袋的单价为15元,圆规

22、单价为3元。(2)设圆规m个,则方案一总费用为:元方案二总费用元故答案为:元;买圆规100个时,方案一总费用:元,方案二总费用:元,方案一更合算。【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键19、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标【解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型

23、号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30a)台依题意,得200a170(30a)5400,解得a10.答:A种型号的电风扇最多能采购10台(3)依题意,有(250200)a(210170)(30a)1400,解得a20.a10,在(2)的条件下超市不能

24、实现利润为1400元的目标【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解20、(1)75;4;(2)CD=4【解析】(1)根据平行线的性质可得出ADB=OAC=75,结合BOD=COA可得出BODCOA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出ABD=75=ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BEAD交AC于点E,同(1)可得出AE=4,在RtAEB中,利用勾股定理可求出BE的长度,再在RtCAD中,利用勾股定理可求出DC的长,

25、此题得解【详解】解:(1)BDAC,ADB=OAC=75BOD=COA,BODCOA,又AO=3,OD=AO=,AD=AO+OD=4BAD=30,ADB=75,ABD=180-BAD-ADB=75=ADB,AB=AD=4(2)过点B作BEAD交AC于点E,如图所示ACAD,BEAD,DAC=BEA=90AOD=EOB,AODEOB,BO:OD=1:3,AO=3,EO=,AE=4ABC=ACB=75,BAC=30,AB=AC,AB=2BE在RtAEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,AB=AC=8,AD=1在RtCAD中,AC2+AD2=CD2,即82

26、+12=CD2,解得:CD=4【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度21、(1)详见解析;(2)的值为3或1【解析】(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.【详解】证明:原方程可化为,不论m为何值,该方程总有两个不相等的实数根解:将代入原方程,得:,解得:,的值为3或1【点睛】本题考查了参数对一元二次方程根的影响.中等难度关键是将根据不同情况讨论参数的取值范围.22、(1)见解析;(1)3.5;(3)见解

27、析; (4)3.1【解析】根据题意作图测量即可【详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当DEF为等边三角形是,EF=DE,由B=45,射线DEBC于点E,则BE=EF即y=x所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1【点睛】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究23、(1)y(x3)25(2)5【解析】(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据

28、三角形面积公式求解【详解】(1)设此抛物线的表达式为ya(x3)25,将点A(1,3)的坐标代入上式,得3a(13)25,解得 此抛物线的表达式为 (2)A(1,3),抛物线的对称轴为直线x3,B(5,3)令x0,则 ABC的面积【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.24、(2)y=x24x+3;(2)2x34,m的值为或2【解析】(2)由直线y=x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)先求得抛物线的顶点坐标为D(2,2)

29、,当直线l2经过点D时求得m=2;当直线l2经过点C时求得m=3,再由x2x22,可得2y33,即可2x3+33,所以2x34;分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得 y=x24x+3;(2)直线l2平行于x轴,y2=y2=y3=m,如图,y=x24x+3=(x2)22,顶点为D(2,2),当直线l2经过点D时,m=2;当直线l2经过点C时,m=3x2x

30、22,2y33,即2x3+33,得2x34,如图,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QNx2x22,x3x2=x2x2,即 x3=2x2x2,l2x轴,即PQx轴,点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,2x2=x22,即x2=4x2,x3=3x24,将点Q(x2,y2)的坐标代入y=x24x+3得y2=x224x2+3,又y2=y3=x3+3x224x2+3=x3+3,x224x2=(3x24)即 x22x24=2,解得x2=,(负值已舍去),m=()24+3=如图,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ由上可得点P、Q关于直线l2对称,点N在抛物线的对称轴l2:x=2,又点N在直线y=x+3上,y3=2+3=2,即m=2故m的值为或2【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识在(2)中注意待定系数法的应用;在(2)注意利用数形结合思想;在(2)注意分情况讨论本题考查知识点较多,综合性较强,难度较大

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁