《2023届福建省厦门市第一中学中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届福建省厦门市第一中学中考数学最后一模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在菱形纸片ABCD中,AB=4,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD2用加减法解方程组时,若要求消去,则应( )ABCD3一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是
2、()A2B3C5D74如图,两个反比例函数y1(其中k10)和y2在第一象限内的图象依次是C1和C2,点P在C1上矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EFx轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A:1B2:C2:1D29:145已知实数a0,则下列事件中是必然事件的是()Aa+30Ba30C3a0Da306如图,在ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若CED的周长为6,则ABCD的周长为()A6B12C18D247如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A9B10C11D1286的
3、绝对值是( )A6B6CD9已知方程x2x2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A3B1C3D110四组数中:1和1;1和1;0和0;和1,互为倒数的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11若一元二次方程x22xm=0无实数根,则一次函数y=(m+1)x+m1的图象不经过第_象限12和平中学自行车停车棚顶部的剖面如图所示,已知AB16m,半径OA10m,高度CD为_m13如果xy5,那么代数式的值是_14如图所示,数轴上点A所表示的数为a,则a的值是_15函数中自变量的取值范围是_16如图,一根直立于水平地面的木杆AB在灯光下形成影子AC
4、(ACAB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化已知AE5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_ m17在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为_三、解答题(共7小题,满分69分)18(10分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 APAD 求证:PDAB
5、如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQBC已知 AD1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QMCN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由19(5分)如图,半圆D的直径AB4,线段OA7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m当半圆D与数轴相切时,m 半圆D与数轴有两个公共点,设另一
6、个公共点是C直接写出m的取值范围是 当BC2时,求AOB与半圆D的公共部分的面积当AOB的内心、外心与某一个顶点在同一条直线上时,求tanAOB的值20(8分)如图,抛物线经过点A(2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果PBO=BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DEx轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.21(10分)解方程组: 22(10分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方
7、面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读23(12分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且ACx轴.(1)已知A(3,0),B(1,0),AC=OA求抛物线解析式和直线OC的解析式;点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线
8、PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EGx轴于G,连CG,BF,求证:CGBF24(14分)如图,在RtABC中,C=90,BE平分ABC交AC于点E,点D在AB上,DEEB(1)求证:AC是BDE的外接圆的切线;(2)若AD=2,AE=6,求EC的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE=1,HDE=60,BCD是等边三角形,即可求DH的长,HE的长
9、,AE的长,NE的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE四边形ABCD是菱形,AB=4,DAB=60,AB=BC=CD=AD=4,DAB=DCB=60,DCABHDE=DAB=60,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=,AEGF,AF=EFCD=BC,DCB=60BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BEC=90在RtBEF中,EF1=BE1+BF1=11+(AB-E
10、F)1EF=由折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键2、C【解析】利用加减消元法消去y即可【详解】用加减法解方程组时,若要求消去y,则应5+3,故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法3、C【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据根据定义即可求出答案详解:众数为5
11、, x=5, 这组数据为:2,3,3,5,5,5,7, 中位数为5, 故选C点睛:本题主要考查的是众数和中位数的定义,属于基础题型理解他们的定义是解题的关键4、A【解析】试题分析:首先根据反比例函数y2=的解析式可得到=3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出EOF的面积,可以得到AOC与EOF的面积比,然后证明EOFAOC,根据对应边之比等于面积比的平方可得到EFAC=故选A考点:反比例函数系数k的几何意义5、B【解析】A、a+30是随机事件,故A错误;B、a30是必然事件,故B正确;C、3a0是不可能事件,故C错误;D、a30是随机事件,故D错误;故
12、选B点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【解析】四边形ABCD是平行四边形,DC=AB,AD=BC,AC的垂直平分线交AD于点E,AE=CE,CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,ABCD的周长=26=12,故选B7、B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这
13、个几何体的侧面积为:25=10,故选B【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键8、A【解析】试题分析:1是正数,绝对值是它本身1故选A考点:绝对值9、D【解析】分析:根据一元二次方程根与系数的关系求出x1x2和x1x2的值,然后代入x1x2x1x2计算即可.详解:由题意得,a=1,b=-1,c=-2,x1x2x1x2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .10、C【解析】根据倒数的定义,分别进行判断即可得出答案【详解】1
14、和1;11=1,故此选项正确;-1和1;-11=-1,故此选项错误;0和0;00=0,故此选项错误;和1,-(-1)=1,故此选项正确;互为倒数的是:,故选C【点睛】此题主要考查了倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数二、填空题(共7小题,每小题3分,满分21分)11、一【解析】一元二次方程x2-2x-m=0无实数根,=4+4m0,解得m-1,m+10,m-10,一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限故答案是:一12、1【解析】由CDAB,根据垂径定理得到ADDB8,再在RtOAD中,利用勾股定理计算出OD,则通过CDOCOD求出
15、CD【详解】解:CDAB,AB16,ADDB8,在RtOAD中,AB16m,半径OA10m,OD6,CDOCOD1061(m)故答案为1【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧也考查了切线的性质定理以及勾股定理13、1【解析】先将分式化简,然后将x+y=1代入即可求出答案【详解】当xy1时,原式xy1,故答案为:1【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.14、【解析】根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标【详解】直角三角形的两直角边为1,2,斜边长为,那么
16、a的值是:故答案为.【点睛】此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离15、x2且x1【解析】解:根据题意得:且x10,解得:且 故答案为且16、7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB,最小值3m,AB=3m,影长最大时,木杆与光线垂直,即AC=5m,BC=4,又可得CABCFE, AE=5m, 解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.17、 cm【解析】利用已知得出底面圆的半径为:1cm,周长为2cm,进而得出母线长,即可得出答案【详解】半径为1cm
17、的圆形,底面圆的半径为:1cm,周长为2cm,扇形弧长为:2=,R=4,即母线为4cm,圆锥的高为:(cm)故答案为cm【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键三、解答题(共7小题,满分69分)18、(1)证明见解析(2) (3) 【解析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P,连接DP交BC于点E,此时PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP,由平行得比例,求出所求比
18、值即可;(3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到MFHNDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可【详解】(1)在图1中,设AD=BC=a,则有AB=CD=a,四边形ABCD是矩形,A=90,PA=AD=BC=a,PD=a,AB=a,PD=AB;(2)如图,作点P关于BC的对称点P,连接DP交BC于点E,此时PDE的周长最小,设AD=PA=BC=a,则有AB=CD=a,BP=AB-PA,BP=BP=a-a,BPCD, ;(3)GH=,理由为:由(2)可知BF=BP=
19、AB-AP,AP=AD,BF=AB-AD,BQ=BC,AQ=AB-BQ=AB-BC,BC=AD,AQ=AB-AD,BF=AQ,QF=BQ+BF=BQ+AQ=AB,AB=CD,QF=CD,QM=CN,QF-QM=CD-CN,即MF=DN,MFDN,NFH=NDH,在MFH和NDH中, ,MFHNDH(AAS),FH=DH,G为CF的中点,GH是CFD的中位线,GH=CD=2=【点睛】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键19、(1);(2);AOB与半圆D的公共部分的
20、面积为;(3)tanAOB的值为或【解析】(1)根据题意由勾股定理即可解答(2)根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可如图,连接DC,得出BCD为等边三角形,可求出扇形ADC的面积,即可解答(3)根据题意如图1,当OBAB时,内心、外心与顶点B在同一条直线上,作AHOB于点H,设BHx,列出方程求解即可解答如图2,当OBOA时,内心、外心与顶点O在同一条直线上,作AHOB于点H,设BHx,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,ABOB,由勾股定理得m ,故答案为 (2)半圆D与数轴相切时,只有一个公共点,此时m,当O
21、、A、B三点在数轴上时,m7+411,半圆D与数轴有两个公共点时,m的取值范围为故答案为如图,连接DC,当BC2时,BCCDBD2,BCD为等边三角形,BDC60,ADC120,扇形ADC的面积为 , ,AOB与半圆D的公共部分的面积为 ;(3)如图1,当OBAB时,内心、外心与顶点B在同一条直线上,作AHOB于点H,设BHx,则72(4+x)242x2,解得x ,OH ,AH ,tanAOB,如图2,当OBOA时,内心、外心与顶点O在同一条直线上,作AHOB于点H,设BHx,则72(4x)242x2,解得x ,OH,AH,tanAOB综合以上,可得tanAOB的值为或【点睛】此题此题考勾股定
22、理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线20、(1);(2)P(1,); (3)3或5.【解析】(1)将点A、B代入抛物线,用待定系数法求出解析式.(2)对称轴为直线x=1,过点P作PGy轴,垂足为G, 由PBO=BAO,得tanPBO=tanBAO,即,可求出P的坐标.(3)新抛物线的表达式为,由题意可得DE=2,过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.【详解】解:(1)抛物线经过点A(2,0),点B(0,4),解得,抛物线解析式为,(2),对称轴为直线x
23、=1,过点P作PGy轴,垂足为G,PBO=BAO,tanPBO=tanBAO,,,,,P(1,),(3)设新抛物线的表达式为则,,DE=2过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.点D在y轴的正半轴上,则,,,m=3,点D在y轴的负半轴上,则,,,m=5,综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.21、【解析】方程组整理后,利用加减消元法求出解即可【详解】解:方程组整理得: +得:9x=-45,即x=-5,把x=-代入得: 解得:则原方程组的解为【点睛】本题主要考查二元一次方程组的解法,二元一次方程
24、组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法22、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人【解析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,总调查人数2020%100人;(2)参加娱乐
25、的人数10040%40人,从条形统计图中得出参加阅读的人数为30人,“其它”类的人数10040302010人,所占比例1010010%,在扇形统计图中“其它”类的圆心角36010%36;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200960(人)【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键23、 (1)y=x24x3;y=x;t= 或;(2)证明见解析.【解析】(1)把A(3,0),B(1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;由题意得OP=2t,P(2t,0),
26、过Q作QHx轴于H,得OH=HQ=t,可得Q(t,t),直线 PQ为yx2t,过M作MGx轴于G,由,则2PGGH,由,得, 于是,解得,从而求出M(3t,t)或M(),再分情况计算即可; (2) 过F作FHx轴于H,想办法证得tanCAG=tanFBH,即CAG=FBH,即得证.【详解】解:(1)把A(3,0),B(1,0)代入二次函数解析式得解得y=x24x3;由AC=OA知C点坐标为(-3,-3),直线OC的解析式y=x;OP=2t,P(2t,0),过Q作QHx轴于H,QO=,OH=HQ=t, Q(t,t),PQ:yx2t,过M作MGx轴于G,,2PGGH,即, , M(3t,t)或M(
27、)当M(3t,t)时:,当M()时:,综上:或(2)设A(m,0)、B(n,0),m、n为方程x2bxc=0的两根,m+n=b,mnc,yx2+(m+n)xmn(xm)(xn),E、F在抛物线上,设、,设EF:ykx+b, , ,令xmAC=,又,tanCAG=,另一方面:过F作FHx轴于H, tanFBH=tanCAG=tanFBH CAG=FBH CGBF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.24、(1)证明见解析;(2)1【解析】试题分析:(1)取BD的中点0,连结OE,如图,由BED=90,根据圆周角定理可得BD为BDE
28、的外接圆的直径,点O为BDE的外接圆的圆心,再证明OEBC,得到AEO=C=90,于是可根据切线的判定定理判断AC是BDE的外接圆的切线;(2)设O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OEBC得,然后根据比例性质可计算出EC试题解析:(1)证明:取BD的中点0,连结OE,如图,DEEB,BED=90,BD为BDE的外接圆的直径,点O为BDE的外接圆的圆心,BE平分ABC,CBE=OBE,OB=OE,OBE=OEB,EB=CBE,OEBC,AEO=C=90,OEAE,AC是BDE的外接圆的切线;(2)解:设O的半径为r,则OA=OD+DA=r+2,OE=r,在RtAEO中,AE2+OE2=AO2,62+r2=(r+2)2,解得r=2,OEBC,即,CE=1考点:1、切线的判定;2、勾股定理