《2023届福州第一中学中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届福州第一中学中考数学考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=20,那么EFC的度数为()A115B120C125D13023的绝对值是()A3B3C-D3如图,中,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为
2、( )A4B5C6D74下列图形中,既是中心对称,又是轴对称的是()ABCD5若a是一元二次方程x2x1=0的一个根,则求代数式a32a+1的值时需用到的数学方法是()A待定系数法 B配方 C降次 D消元6如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD7将直径为60cm的圆
3、形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A10cmB30cmC45cmD300cm8某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A25本B20本C15本D10本9函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx310将抛物线yx2x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()Ayx2+3x+6Byx2+3xCyx25x+10Dyx25x+4二、填空题(本大题共6个小题,每小题3分,共
4、18分)11如图,反比例函数(x0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则OEF的面积的值为 12设ABC的面积为1,如图,将边BC、AC分别2等分,BE1、AD1相交于点O,AOB的面积记为S1;如图将边BC、AC分别3等分,BE1、AD1相交于点O,AOB的面积记为S2;,依此类推,则Sn可表示为_(用含n的代数式表示,其中n为正整数)13已知关于 x 的函数 y=(m1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_14如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k0)的图象上与正方形的一个
5、交点若图中阴影部分的面积等于9,则这个反比例函数的解析式为 15如图,在四边形ABCD中,ABAD,BADBCD90,连接AC、BD,若S四边形ABCD18,则BD的最小值为_16如图,在O中,直径AB弦CD,A=28,则D=_三、解答题(共8题,共72分)17(8分)计算()2(3)0+|2|+2sin60;18(8分)如图,分别延长ABCD的边到,使,连接EF,分别交于,连结求证:19(8分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则
6、是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.20(8分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”(1)“抛物线三角形”一定是 三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,
7、是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由21(8分)如图,在菱形ABCD中,点E在对角线BD上. 将线段CE绕点C顺时针旋转,得到CF,连接DF. (1)求证:BE=DF;(2)连接AC, 若EB=EC ,求证:. 22(10分)如图,在ABC中,ACB90,ABC10,CDE是等边三角形,点D在边AB上如图1,当点E在边BC上时,求证DEEB;如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求C
8、G的长23(12分)关于x的一元二次方程ax2+bx+1=1(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根24如图所示,在坡角为30的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:由已知条件易得AEB=70,由此可得DEB=110,结合折叠的性质可得DEF=55,则由ADBC可得EFC=125,再由折叠的性质即可
9、得到EFC=125.详解:在ABE中,A=90,ABE=20,AEB=70,DEB=180-70=110,点D沿EF折叠后与点B重合,DEF=BEF=DEB=55,在矩形ABCD中,ADBC,DEF+EFC=180,EFC=180-55=125,由折叠的性质可得EFC=EFC=125.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.2、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.3、B【解析】
10、先利用已知证明,从而得出,求出BD的长度,最后利用求解即可【详解】 故选:B【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键4、C【解析】根据中心对称图形,轴对称图形的定义进行判断【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形,轴对称图形的判断关键是根据图形自身的对称性进行判断5、C【解析】根据一元二次方程的解的定义即可求出答案【详解】由题意可知:a2-a-1=0,a
11、2-a=1,或a2-1=aa3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=2故选:C【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义6、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4图象的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,
12、故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势7、A【解析】根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。8、C【解析】设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40x)本,乙种笔记本的单价是(y+3)元,
13、根据题意列出关于x、y的二元一次方程组,求出x、y的值即可【详解】解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40x)本,乙种笔记本的单价是(y+3)元,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本故选C【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键9、D【解析】由题意得,x10,解得x1故选D10、A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】 ,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数
14、的平移一定要将解析式化为顶点式进行;二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题分析:如图,连接OBE、F是反比例函数(x0)的图象上的点,EAx轴于A,FCy轴于C,SAOE=SCOF=1=AE=BE,SBOE=SAOE=,SBOC=SAOB=1SBOF=SBOCSCOF=1=F是BC的中点SOEF=S矩形AOCBSAOESCOFSBEF=6=12、【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,AE1:AC=1:(n+1),SABE1:SABC=1:(n+1),SABE1=,SABM:SABE1=(n+1):(2n+1),SABM:=(n+1):(
15、2n+1),Sn=故答案为13、1 或 0 或 【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值【详解】解:(1)当 m1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴交点坐标为( ,0);与 y 轴交点坐标(0,1)符合题意(2)当 m10 时,m1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是=44(m1)m0,解得,(m)2,解得 m 或 m 将(0,0)代入解析式得,m=0,符合题意(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴
16、交于交于另一点,这时:=44(m1)m=0,解得:m= 故答案为1 或 0 或【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解14、【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:反比例函数的图象关于原点对称,阴影部分的面积和正好为小正方形的面积设正方形的边长为b,则b2=9,解得b=3正方形
17、的中心在原点O,直线AB的解析式为:x=2点P(2a,a)在直线AB上,2a=2,解得a=3P(2,3)点P在反比例函数(k0)的图象上,k=23=2此反比例函数的解析式为:15、6【解析】过A作AMCD于M,过A作ANBC于N,先根据“AAS”证明DAMBAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BDAC时BD最小,且最小值为6.【详解】如下图,过A作AMCD于M,过A作ANBC于N,则MAN90,DAMBAM90,BAMBAN90,DAMBAN.DMAN90,ABAD,DAMBAN,AMAN,四边形AMCN为正方形,S四边形ABCDS四边形AMCNAC2,AC=6,BDAC
18、时BD最小,且最小值为6.故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.16、34【解析】分析:首先根据垂径定理得出BOD的度数,然后根据三角形内角和定理得出D的度数详解:直径AB弦CD, BOD=2A=56, D=9056=34点睛:本题主要考查的是圆的垂径定理,属于基础题型求出BOD的度数是解题的关键三、解答题(共8题,共72分)17、1【解析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果【详解】原式=4-1+2-+=1【点睛】此题考查了实数的运算,绝对值,零指数幂、负整数指数幂,
19、以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键18、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出EGD和FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案详解:证明:在ABCD中,又,又,四边形AGCH为平行四边形, 点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形19、(1)(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分【解析】试题分析:(1)列
20、表如下:共有16种情况,且每种情况出现的可能性相同,其中,乘积是2的倍数的有12种,乘积是3的倍数的有7种.(两数乘积是2的倍数)(两数乘积是3的倍数)(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分考点:概率的计算点评:题目难度不大,考查基本概率的计算,属于基础题。本题主要是第二问有点难度,对游戏规则的确定,需要一概率为基础。20、(1)等腰(2)(3)存在, 【解析】解:(1)等腰 (2)抛物线的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点满足 (3)存在 如图,作与关于原点中心对称, 则四边形为平行四边形
21、 当时,平行四边形为矩形 又, 为等边三角形 作,垂足为 , , 设过点三点的抛物线,则 解之,得 所求抛物线的表达式为21、证明见解析【解析】【分析】(1)根据菱形的性质可得BC=DC,再根据,从而可得 ,继而得=,由旋转的性质可得=,证明,即可证得=;(2)根据菱形的对角线的性质可得,从而得,由,可得,由(1)可知,可推得,即可得,问题得证.【详解】(1)四边形ABCD是菱形, ,线段由线段绕点顺时针旋转得到, ,在和中,;(2)四边形ABCD是菱形,由(1)可知, ,.【点睛】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键.22、(
22、1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2【解析】(1)、根据等边三角形的性质得出CED=60,从而得出EDB=10,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据ACO和CDE为等边三角形,从而得出ACD和OCE全等,然后得出COE和BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出COE和BOE全等,然后得出CEG和DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案【详解】(1)CDE是等边三角形, CED=60, EDB=60B=10,EDB=B, DE=EB;(2) ED=EB
23、, 理由如下:取AB的中点O,连接CO、EO,ACB=90,ABC=10, A=60,OC=OA, ACO为等边三角形, CA=CO,CDE是等边三角形, ACD=OCE,ACDOCE, COE=A=60,BOE=60, COEBOE, EC=EB, ED=EB;(1)、取AB的中点O,连接CO、EO、EB, 由(2)得ACDOCE,COE=A=60,BOE=60,COEBOE,EC=EB,ED=EB, EHAB,DH=BH=1,GEAB, G=180A=120, CEGDCO, CG=OD,设CG=a,则AG=5a,OD=a,AC=OC=4a,OC=OB, 4a=a+1+1, 解得,a=2,
24、即CG=223、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.24、旗杆AB的高为(4+1)m【解析】试题分析:过点C作CEAB于E,过点B作BFCD于F在RtBFD中,分别求出DF、BF的长度在RtACE中,求出AE、CE的长度,继而可求得AB的长度试题解析:解:过点C作CEAB于E,过点B作BFCD于F,过点B作BFCD于F在RtBFD中,DBF=30,sinDBF=,cosDBF=BD=8,DF=4,BF=ABCD,CEAB,BFCD,四边形BFCE为矩形,BF=CE=4,CF=BE=CDDF=1在RtACE中,ACE=45,AE=CE=4,AB=4+1(m)答:旗杆AB的高为(4+1)m