《2023届江西省南康区重点达标名校中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江西省南康区重点达标名校中考押题数学预测卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,中,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的ABCD2下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示
2、该位置上小立方块的个数,则该几何体的主视图为( )ABCD3把a的根号外的a移到根号内得()ABCD4将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A15B22.5C30D455在RtABC中,C90,如果AC4,BC3,那么A的正切值为()ABCD6若一组数据2,3,5,7的众数为7,则这组数据的中位数为( )A2B3C5D77拒绝“餐桌浪费”,刻不容缓节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年“”这个数据用科学记数法表
3、示为( )A B C D.8如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为( )A90B60C45D309某市从今年1月1日起调整居民用水价格,每立方米水费上涨 小丽家去年12月份的水费是15元,而今年5月的水费则是10元已知小丽家今年5月的用水量比去年12月的用水量多5m1求该市今年居民用水的价格设去年居民用水价格为x元/m1,根据题意列方程,正确的是()ABCD10如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y(x0)的图象经过点D、E若BDE的面积为1,则k的值是()A8B4C4D811如图,在矩形ABCD中,AB=,AD=2
4、,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD12如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,且AB=10,BC=15,MN=3,则AC的长是()A12B14 C16D18二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是 14某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种
5、花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_元15某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有_只16与是位似图形,且对应面积比为4:9,则与的位似比为_17将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_,这两条直线间的距离为_18已知x+y8,xy2,则x2y+xy2_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)科技改变生活,手机导航极大方便了人们的出行
6、,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55方向行驶4千米至B地,再沿北偏东35方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan551.4,tan350.7,sin550.8)20(6分)解不等式组: .21(6分)如图,BD是ABC的角平分线,点E,F分别在BC,AB上,且DEAB,BEAF(1)求证:四边形ADEF是平行四边形;(2)若ABC60,BD6,求DE的长22(8分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD1米,A27,求跨度AB的长(精确到0.01米).2
7、3(8分)如图,ACB与ECD都是等腰直角三角形,ACB=ECD=90,点D为AB边上的一点,(1)求证:ACEBCD;(2)若DE=13,BD=12,求线段AB的长24(10分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围25(10分)在中,是边的中线,于,连结,点在射线上(与,不重合)(1)如果如图1, 如图2,点在线
8、段上,连结,将线段绕点逆时针旋转,得到线段,连结,补全图2猜想、之间的数量关系,并证明你的结论;(2)如图3,若点在线段 的延长线上,且,连结,将线段绕点逆时针旋转得到线段,连结,请直接写出、三者的数量关系(不需证明)26(12分)如图,AB是O的直径,C、D为O上两点,且,过点O作OEAC于点EO的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:FB;(2)若AB12,BG10,求AF的长.27(12分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相
9、同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】RtAOB中,ABOB,且AB=OB=3,所以很容易求得AOB=A=45;再由平行线的性质得出OCD=A,即AOD=OCD=45,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象【详解】解:RtAOB中,ABOB,且AB=OB=3
10、,AOB=A=45,CDOB,CDAB,OCD=A,AOD=OCD=45,OD=CD=t,SOCD=ODCD=t2(0t3),即S=t2(0t3)故S与t之间的函数关系的图象应为定义域为0,3,开口向上的二次函数图象;故选D【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象2、B【解析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1故选B【点睛】此题考查了三视图判断几
11、何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.3、C【解析】根据二次根式有意义的条件可得a0,原式变形为(a),然后利用二次根式的性质得到,再把根号内化简即可【详解】解:0,a0,原式(a),故选C【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型4、A【解析】试题分析:如图,过A点作ABa,1=2,ab,ABb,3=4=30,而2+3=45,2=15,1=15故选A考点:平行线的性质5、A【解析】根据锐角三角函数的定义求出即可.【详解】解:在RtABC中,C=90,AC=4,BC=3, tanA=
12、.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.6、C【解析】试题解析:这组数据的众数为7,x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1故选C考点:众数;中位数.7、C【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】32400000=3.24107元故选C【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键8、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可试题解析:连接AC,如图
13、:根据勾股定理可以得到:AC=BC=,AB=()1+()1=()1AC1+BC1=AB1ABC是等腰直角三角形ABC=45故选C考点:勾股定理9、A【解析】解:设去年居民用水价格为x元/cm1,根据题意列方程:,故选A10、B【解析】根据反比例函数的图象和性质结合矩形和三角形面积解答.【详解】解:作,连接四边形AHEB,四边形ECOH都是矩形,BEEC, 故选B【点睛】此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.11、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDS
14、ABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积12、C【解析】延长线段BN交AC于E.AN平分BAC,BAN=EAN.在ABN与AEN中,BAN=EAN,AN=AN,ANB=ANE=90,ABNAEN(ASA),AE=AB=10,BN=NE.又M是ABC的边BC的中点,CE=2MN
15、=23=6,AC=AE+CE=10+6=16.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】利用同角的余角相等,易得EAB=PAD,再结合已知条件利用SAS可证两三角形全等;过B作BFAE,交AE的延长线于F,利用中的BEP=90,利用勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF;利用中的全等,可得APD=AEB,结合三角形的外角的性质,易得BEP=90,即可证;连接BD,求出ABD的面积,然后减去BDP的面积即可;在RtABF中,利用勾股定理可求AB2,即是正方形的面积【详解】EAB+BAP=90,PAD
16、+BAP=90,EAB=PAD,又AE=AP,AB=AD,在APD和AEB中,APDAEB(SAS);故此选项成立;APDAEB,APD=AEB,AEB=AEP+BEP,APD=AEP+PAE,BEP=PAE=90,EBED;故此选项成立;过B作BFAE,交AE的延长线于F,AE=AP,EAP=90,AEP=APE=45,又中EBED,BFAF,FEB=FBE=45,又BE=,BF=EF=,故此选项不正确;如图,连接BD,在RtAEP中,AE=AP=1,EP=,又PB=,BE=,APDAEB,PD=BE=,SABP+SADP=SABD-SBDP=S正方形ABCD-DPBE=(4+)-=+故此选
17、项不正确EF=BF=,AE=1,在RtABF中,AB2=(AE+EF)2+BF2=4+,S正方形ABCD=AB2=4+,故此选项正确故答案为【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识14、17【解析】根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.【详解】解:1-30%-50%=20%,.【点睛】本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.15、1【解析】求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答【详解】解: 只故答案为:1【点睛】本题考查的是通过
18、样本去估计总体,总体百分比约等于样本百分比16、2:1【解析】由相似三角形的面积比等于相似比的平方,即可求得与的位似比【详解】解与是位似图形,且对应面积比为4:9,与的相似比为2:1,故答案为:2:1【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方17、y=x+1 【解析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1再利用等面积法求得这两条直线间的距离即可【详解】直线 y=x 沿y轴向上平移1个单位长度,所得直线的函数关系式为:y=x+1 A(0,1),B(1,0),AB=
19、1,过点 O 作 OFAB 于点 F,则ABOF=OAOB,OF=,即这两条直线间的距离为 故答案为y=x+1,【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m18、1【解析】将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值【详解】x+y=8,xy=2,x2y+xy2=xy(x+y)=28=1故答案为:1【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式三、解答题:(本大题共9个小题,共78分,解答应写出文字说明
20、、证明过程或演算步骤19、B、C两地的距离大约是6千米【解析】过B作BDAC于点D,在直角ABD中利用三角函数求得BD的长,然后在直角BCD中利用三角函数求得BC的长【详解】解:过B作于点D在中,千米,中,千米,千米答:B、C两地的距离大约是6千米【点睛】此题考查了方向角问题此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解20、x2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由得:x3,由得:x2,不等式组的解集为:x2.21、(1)证明见解析;(2).【解析】(1)由BD是ABC的角平分线,DEAB
21、,可证得BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EHBD于点H,由ABC=60,BD是ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案【详解】(1)证明:BD是ABC的角平分线,ABD=DBE,DEAB,ABD=BDE,DBE=BDE,BE=DE;BE=AF,AF=DE;四边形ADEF是平行四边形;(2)解:过点E作EHBD于点HABC=60,BD是ABC的平分线,ABD=EBD=30,DH=BD=6=3,BE=DE,BH=DH=3,BE=,DE=BE=【点睛】此题考查了平行四边形的判定与性质、等腰
22、三角形的判定与性质以及三角函数等知识注意掌握辅助线的作法22、AB3.93m【解析】想求得AB长,由等腰三角形的三线合一定理可知AB2AD,求得AD即可,而AD可以利用A的三角函数可以求出【详解】ACBC,D是AB的中点,CDAB,又CD1米,A27,ADCDtan271.96,AB2AD,AB3.93m【点睛】本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB23、(3)证明见解析; (3)AB=3.【解析】(3)由等腰直角三角形得出AC=BC,CE=CD,ACB=ECD=90,得出BCD=ACE,根据SAS推出ACEBCD即可;(3)求出
23、AD=5,根据全等得出AE=BD=33,在RtAED中,由勾股定理求出DE即可【详解】证明:(3)如图,ACB与ECD都是等腰直角三角形,AC=BC,CE=CD,ACB=ECD=90,ACBACD=DCEACD,BCD=ACE,在BCD和ACE中,BC=AC,BCD=ACE,CD=CE,BCDACE(SAS);(3)由(3)知BCDACE,则DBC=EAC,AE=BD=33,CAD+DBC=90,EAC+CAD=90,即EAD=90,AE=33,ED=33,AD=5,AB=AD+BD=33+5=3【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3全
24、等三角形的判定与性质;3等腰直角三角形24、(1);(2)-2或-1;(3)-1n1或1n3.【解析】(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 解得: 此抛物线的解析式 ;(2)设直线AB的解析式为y=kx+b,依题意得: 解得: 直线AB的解析式为y=-x.点P的横坐标为m,且在抛物线上,点P的坐标为(m, )轴,且点Q有线段AB上,点Q的坐标为(m,-m) 当PQ=AP时,如图,APQ=90,轴,解得,m=-2或m=1(
25、舍去) 当AQ=AP时,如图,过点A作ACPQ于C,为等腰直角三角形,2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)如图,当n1时,依题意可知C,D的横坐标相同,CE=2(1-n)点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.此时n的取值范围-1n1时,依题可知点E的坐标为(2-n,-n)当点E在抛物线上时, 解得,n=3或n=1.n1.n=3.此时n的取值范围1n3.综上所述,n的取值范围为-1n1或1n3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.25、(
26、1)60;理由见解析;(2),理由见解析.【解析】(1)根据直角三角形斜边中线的性质,结合,只要证明是等边三角形即可;根据全等三角形的判定推出,根据全等的性质得出,(2)如图2,求出,求出,根据全等三角形的判定得出,求出,推出,解直角三角形求出即可【详解】解:(1),是等边三角形,故答案为60.如图1,结论:理由如下:,是的中点,线段绕点逆时针旋转得到线段,在和中,(2)结论:理由:,是的中点,线段绕点逆时针旋转得到线段,在和中,而,在中,即【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出是解此题的关键,综合性比较强,证明过程类似26、(1)
27、见解析;(2).【解析】(1)根据圆周角定理得到GABB,根据切线的性质得到GAB+GAF90,证明FGAB,等量代换即可证明;(2)连接OG,根据勾股定理求出OG,证明FAOBOG,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:,.GABB,AF是O的切线,AFAO.GAB+GAF90.OEAC,F+GAF90.FGAB,FB;(2)解:连接OG.GABB,AGBG.OAOB6,OGAB.,FAOBOG90,FB,FAOBOG,.【点睛】本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.27、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:P(小王)=,P(小李)=,规则不公平点睛:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比