《【提前招生】湖北省黄冈中学2023年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《【提前招生】湖北省黄冈中学2023年中考联考数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列判断错误的是( )A对角线相等的四边形是矩形B对角线相互垂直平分的四边形是菱形C对角线相互垂直且
2、相等的平行四边形是正方形D对角线相互平分的四边形是平行四边形2如图,点A,B,C在O上,ACB=30,O的半径为6,则的长等于()AB2C3D43小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()ABCD4在RtABC中,C=90,如果AC=2,cosA=,那么AB的长是()A3BCD5若代数式的值为零,则实数x的值为()Ax0Bx0Cx3Dx36如果数据x1,x2,xn的方差是3,则另一组数据2x1,2x2,2xn的方差是()A3B6C12D57一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是()ABCD8估计+1的值在()A2和3之
3、间B3和4之间C4和5之间D5和6之间9已知x2y=3,那么代数式32x+4y的值是( )A3B0C6D910已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )ABCD11的相反数是( )AB2CD12如图,ABC中,AB=4,BC=6,B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,则平移的距离和旋转角的度数分别为( )A4,30B2,60C1,30D3,60二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在RtABC中,ACB=90,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF
4、=_cm14如图,四边形ABCD内接于O,BD是O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则O的半径为_15已知二次函数yax2bxc(a0)中,函数值y与自变量x的部分对应值如下表:x54321y32565则关于x的一元二次方程ax2bxc2的根是_16方程的根为_17当x _ 时,分式 有意义18关于x的一元二次方程有实数根,则a的取值范围是 _.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形是平行四边形;(
5、2)如果,求证四边形是矩形.20(6分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64,在斜坡上的点D处测得楼顶B的仰角为45,其中A、C、E在同一直线上求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin640.9,tan642)21(6分)如图1,经过原点O的抛物线y=ax2+bx(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线
6、上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由22(8分)如图,PB与O相切于点B,过点B作OP的垂线BA,垂足为C,交O于点A,连结PA,AO,AO的延长线交O于点E,与PB的延长线交于点D(1)求证:PA是O的切线;(2)若tanBAD=,且OC=4,求BD的长23(8分)计算:|+(2017)02sin30+3124(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图请结合
7、图中的信息解答下列问题:(1)本次抽查测试的学生人数为 ,图中的a的值为 ;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数25(10分)如图,抛物线y=x2x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求ACP面积的最大值26(12分)计算:(3.14)02|3|27(12分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40a100),每件产品销售价为120元,每年最多可生产125万
8、件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】利用菱形的判定定理、矩形的判定定理、平行
9、四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大2、B【解析】根据圆周角得出AOB60,进而利用弧长公式解答即可【详解】解:ACB30,AOB60,的长2,故选B【点睛】此题考查弧长的计算,关键是根据圆周角得出AOB603、D【解析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(A
10、BC),(ACB),(BAC),(BCA),(CAB),(CBA),他的爸爸妈妈相邻的概率是:,故选D4、A【解析】根据锐角三角函数的性质,可知cosA=,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.5、A【解析】根据分子为零,且分母不为零解答即可.【详解】解:代数式的值为零,x0,此时分母x-30,符合题意.故选A【点睛】本题考查了分式的值为零的条件若分式的值为零,需同时具备两个条件:分子的值为0,分母的值不为0,这两个条件缺一不可.6、C【解析】【分析】根据题意,数据x1,x2,xn的
11、平均数设为a,则数据2x1,2x2,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案【详解】根据题意,数据x1,x2,xn的平均数设为a,则数据2x1,2x2,2xn的平均数为2a,根据方差公式:=3,则=4=43=12,故选C【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可7、A【解析】一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.8、B【解析】分析:直接利用23,进而得出答案详解:23,3+14,故选B点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题
12、关键9、A【解析】解:x2y=3,32x+4y=32(x2y)=323=3;故选A10、D【解析】试题分析:D选项中作的是AB的中垂线,PA=PB,PB+PC=BC,PA+PC=BC故选D考点:作图复杂作图11、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .12、B【解析】试题分析:B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,ABC=60,AB=AB=AC=4,ABC是等边三角形,BC=4,BAC=60,BB=64=2,平移的距离
13、和旋转角的度数分别为:2,60故选B考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定二、填空题:(本大题共6个小题,每小题4分,共24分)13、3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质14、【解析】如图,作辅助线CF;证明CFAB(垂径定理的推论);证明ADAB,得到ADOC,ADECOE;得到AD:CO=DE:OE,求出CO的长,即可解决问题【详解】
14、如图,连接CO并延长,交AB于点F;AC=BC,CFAB(垂径定理的推论);BD是O的直径,ADAB;设O的半径为r;ADOC,ADECOE,AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,5:r=3:(r-3),解得:r=,故答案为【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断15、x1=-4,x1=2【解析】解:x=3,x=1的函数值都是5,相等,二次函数的对称轴为直线x=1x=4时,y=1,x=2时,y=1,方程ax1+bx+c=3的解是x1=4,x1=2故答案为
15、x1=4,x1=2点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键16、2或7【解析】把无理方程转化为整式方程即可解决问题【详解】两边平方得到:13+2=25,=6,(x+11)(2-x)=36,解得x=-2或-7,经检验x=-2或-7都是原方程的解故答案为-2或-7【点睛】本题考查无理方程,解题的关键是学会把无理方程转化为整式方程17、x3【解析】由题意得x-30,x3.18、a1且a0【解析】关于x的一元二次方程有实数根, ,解得:,a的取值范围为:且 .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此 ;(2)
16、这道一元二次方程有实数根,因此 ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)见解析.【解析】(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.【详解】证明:(1)是的中点,又,又是的中线,又,四边形是平行四边形;(2),即,又,又是的中线,又四边形是平行四边形,四边形是矩形.【点睛】本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:
17、对角线相等的平行四边形是矩形.20、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度试题解析:(1)在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,设DE=5x米,则EC=12x米,(5x)2+(12x)2=132,解得:x=1,5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知BDH=45,BH=DH=x,D
18、E=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,tan64=,2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米21、(1)y=2x23x;(2)C(1,1);(3)(,)或(,)【解析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得ABONBO,可求得N点坐标,可求得直线BN的
19、解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MGy轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PHx轴于点H,由条件可证得MOGPOH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标【详解】(1)B(2,t)在直线y=x上,t=2,B(2,2),把A、B两点坐标代入抛物线解析式可得:,解得:,抛物线解析式为;(2)如图1,过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,点C是抛物线上第四象限的点,可设C(t,2t23t),则E(t,0),D(t,t),OE=t,BF=2t
20、,CD=t(2t23t)=2t2+4t,SOBC=SCDO+SCDB=CDOE+CDBF=(2t2+4t)(t+2t)=2t2+4t,OBC的面积为2,2t2+4t=2,解得t1=t2=1,C(1,1);(3)存在设MB交y轴于点N,如图2,B(2,2),AOB=NOB=45,在AOB和NOB中,AOB=NOB,OB=OB,ABO=NBO,AOBNOB(ASA),ON=OA=,N(0,),可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,M(,),C(1,1),COA=AOB=45,且B(2,2),OB=,O
21、C=,POCMOB,POC=BOM,当点P在第一象限时,如图3,过M作MGy轴于点G,过P作PHx轴于点H,如图3COA=BOG=45,MOG=POH,且PHO=MGO,MOGPOH,M(,),MG=,OG=,PH=MG=,OH=OG=,P(,);当点P在第三象限时,如图4,过M作MGy轴于点G,过P作PHy轴于点H,同理可求得PH=MG=,OH=OG=,P(,);综上可知:存在满足条件的点P,其坐标为(,)或(,)【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识在(1)中注意待定系数法
22、的应用,在(2)中用C点坐标表示出BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况22、(1)证明见解析;(2)【解析】试题分析:(1)连接OB,由SSS证明PAOPBO,得出PAO=PBO=90即可;(2)连接BE,证明PACAOC,证出OC是ABE的中位线,由三角形中位线定理得出BE=2OC,由DBEDPO可求出试题解析:(1)连结OB,则OA=OB如图1,OPAB,AC=BC,OP是AB的垂直平分线,PA=PB在PAO和PBO中,PAOPBO(SSS),PBO=PAOPB为O的切线,B为切点,PBO=90,PAO=90,即PAOA,PA是O
23、的切线;(2)连结BE如图2,在RtAOC中,tanBAD=tanCAO=,且OC=4,AC=1,则BC=1在RtAPO中,ACOP,PACAOC,AC2=OCPC,解得PC=9,OP=PC+OC=2在RtPBC中,由勾股定理,得PB=,AC=BC,OA=OE,即OC为ABE的中位线OC=BE,OCBE,BE=2OC=3BEOP,DBEDPO,即,解得BD=23、 【解析】分析:化简绝对值、0次幂和负指数幂,代入30角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可详解:原式=+12+=点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟
24、记相关法则和性质是解决此题的关键24、(1)50、2;(2)平均数是7.11;众数是1;中位数是1【解析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得【详解】(1)本次抽查测试的学生人数为1421%=50人,a%=100%=2%,即a=2故答案为50、2;(2)观察条形统计图,平均数为=7.11在这组数据中,1出现了20次,出现的次数最多,这组数据的众数是1将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,=1,这组数据的中位数是1【点睛】本题考查了众数、平均数和中位数的定义用到的知识点:一组数据中出现次数最多
25、的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一组数据中所有数据之和再除以数据的个数25、 (1) A(4,0),B(2,0);(2)ACP最大面积是4.【解析】(1)令y=0,得到关于x 的一元二次方程x2x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PDAO交AC于D,设P(t,t2t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以SACP=PDOA=PD4=2PD,可得SACP关于t 的
26、函数关系式,继而可求出ACP面积的最大值【详解】(1)解:设y=0,则0=x2x+4x1=4,x2=2A(4,0),B(2,0)(2)作PDAO交AC于D设AC解析式y=kx+b解得:AC解析式为y=x+4.设P(t,t2t+4)则D(t,t+4)PD=(t2t+4)(t+4)=t22t=(t+2)2+2SACP=PD4=(t+2)2+4当t=2时,ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.26、1【解析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解
27、】原式 =13+43,=1【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算27、(1)y1=(120-a)x(1x125,x为正整数),y2=100x-0.5x2(1x120,x为正整数);(2)110-125a(万元),10(万元);(3)当40a80时,选择方案一;当a=80时,选择方案一或方案二均可;当80a100时,选择方案二【解析】(1)根据题意直接得出y1与y2与x的函数关系式即可;(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值又因为0.50,可求出y2的最大值
28、;(3)第三问要分两种情况决定选择方案一还是方案二当2000200a1以及2000200a1【详解】解:(1)由题意得:y1=(120a)x(1x125,x为正整数),y2=100x0.5x2(1x120,x为正整数);(2)40a100,120a0,即y1随x的增大而增大,当x=125时,y1最大值=(120a)125=110125a(万元)y2=0.5(x100)2+10,a=0.50,x=100时,y2最大值=10(万元);(3)由110125a10,a80,当40a80时,选择方案一;由110125a=10,得a=80,当a=80时,选择方案一或方案二均可;由110125a10,得a80,当80a100时,选择方案二考点:二次函数的应用