《2023届甘肃省白银市靖远县中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届甘肃省白银市靖远县中考数学最后冲刺模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列函数中,当x0时,y值随x值增大而减小的是()Ayx2Byx1CD2在RtABC中,C90,那么sinB等于()ABCD3下列美丽的图案中,不是轴对称图形的是( )ABCD4如果解关于x的分式方程时出现增根,那么m的值为A-2B
2、2C4D-45一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )ABCD6矩形具有而平行四边形不具有的性质是()A对角相等B对角线互相平分C对角线相等D对边相等7如图,四边形ABCD中,AB=CD,ADBC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )ABCD38如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=20,那么EFC的度数为()A115B120C125D1309如图,在平面直角坐标系中,把ABC绕原点O旋转180得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(
3、5,2),则点D的坐标为()A(2,2)B(2,2)C(2,5)D(2,5)10如图,A、B、C、D四个点均在O上,AOD=50,AODC,则B的度数为()A50 B55 C60 D65二、填空题(共7小题,每小题3分,满分21分)11如图,在 RtABC 中,C=90,AM 是 BC 边上的中线,cosAMC ,则 tanB 的值为_12计算tan2602sin30cos45的结果为_13若代数式在实数范围内有意义,则实数x的取值范围为_14点(a1,y1)、(a1,y2)在反比例函数y(k0)的图象上,若y1y2,则a的范围是_15如图,1,2是四边形ABCD的两个外角,且1+2210,则
4、A+D_度.16已知=32,则的余角是_17计算:(a2)2=_三、解答题(共7小题,满分69分)18(10分)如图,四边形ABCD内接于O,BD是O的直径,AECD于点E,DA平分BDE(1)求证:AE是O的切线;(2)如果AB=4,AE=2,求O的半径19(5分)已知:如图,ABC,射线BC上一点D求作:等腰PBD,使线段BD为等腰PBD的底边,点P在ABC内部,且点P到ABC两边的距离相等20(8分)张老师在黑板上布置了一道题:计算:2(x+1)2(4x5),求当x和x时的值小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由21(10分)在平面直角坐标系xOy中,将抛物线(m
5、0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点(1)直接写出点A的坐标;(2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点当BAC90时求抛物线G2的表达式;若60BAC120,直接写出m的取值范围22(10分)计算: .23(12分)如图所示,内接于圆O,于D;(1)如图1,当AB为直径,求证:;(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,求CF的长度24(14分)-()-1+3tan60参考答案一、选择题(每小题只有一个正确答案,每小题3
6、分,满分30分)1、D【解析】A、yx2,对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误B、k0,y随x增大而增大,故此选项错误C、B、k0,y随x增大而增大,故此选项错误D、y=(x0),反比例函数,k0,故在第一象限内y随x的增大而减小,故此选项正确2、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.3、A【解析】根据轴对称图形的概念对各选项分析判断
7、即可得解【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、D【解析】,去分母,方程两边同时乘以(x1),得:m+1x=x1,由分母可知,分式方程的增根可能是1当x=1时,m+4=11,m=4,故选D5、A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意
8、,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.6、C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可解:矩形的性质有:矩形的对边相等且平行,矩形的对角相等,且都是直角,矩形的对角线互相平分、相等;平行四边形的性质有:平行四边形的对边分别相等且平行,平行四边形的对角分别相等,平行四边形的对角线互相平分;矩形具有而平行四边形不一定具有的性质是对角线相等,故选C7、B【解析】四边形AECD是平行四边形,AE=CD,AB=BE=CD=3,AB=BE=AE,ABE是等边三角形,B=60,的弧长=.故选
9、B.8、C【解析】分析:由已知条件易得AEB=70,由此可得DEB=110,结合折叠的性质可得DEF=55,则由ADBC可得EFC=125,再由折叠的性质即可得到EFC=125.详解:在ABE中,A=90,ABE=20,AEB=70,DEB=180-70=110,点D沿EF折叠后与点B重合,DEF=BEF=DEB=55,在矩形ABCD中,ADBC,DEF+EFC=180,EFC=180-55=125,由折叠的性质可得EFC=EFC=125.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.9、A【解析】分析:依据四边形ABCD是平行四
10、边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标10、D【解析】试题分析:连接OC,根据平行可得:ODC=AOD=50,则DOC=80,则AOC=130,根据同弧所对的圆周角等于圆心角度数的一半可得:B=1302=65.考点:圆的基本性质二、填空题(共7小题,每小题3分,满分
11、21分)11、【解析】根据cosAMC ,设, ,由勾股定理求出AC的长度,根据中线表达出BC即可求解【详解】解:cosAMC ,设, ,在RtACM中,AM 是 BC 边上的中线,BM=MC=3x,BC=6x,在RtABC中,故答案为:【点睛】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义12、1【解析】分别算三角函数,再化简即可.【详解】解:原式=-2-=1.【点睛】本题考查掌握简单三角函数值,较基础.13、x1【解析】根据二次根式有意义的条件可求出x的取值范围【详解】由题意可知:1x0,x1故答案为:x1【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方
12、数是非负数解答即可14、1a1【解析】解:k0,在图象的每一支上,y随x的增大而减小,当点(a-1,y1)、(a+1,y2)在图象的同一支上,y1y2,a-1a+1,解得:无解;当点(a-1,y1)、(a+1,y2)在图象的两支上,y1y2,a-10,a+10,解得:-1a1故答案为:-1a1【点睛】本题考查反比例函数的性质15、210.【解析】利用邻补角的定义求出ABC+BCD,再利用四边形内角和定理求得A+D.【详解】1+2210,ABC+BCD1802210150,A+D360150210.故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出ABC
13、+BCD是关键.16、58【解析】根据余角:如果两个角的和等于90(直角),就说这两个角互为余角即其中一个角是另一个角的余角可得答案【详解】解:的余角是:90-32=58故答案为58【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度17、a1【解析】根据幂的乘方法则进行计算即可.【详解】 故答案为【点睛】考查幂的乘方,掌握运算法则是解题的关键.三、解答题(共7小题,满分69分)18、(1)见解析;(1)O半径为【解析】(1)连接OA,利用已知首先得出OADE,进而证明OAAE就能得到AE是O的切线;(1)通过证明BADAED,再利用对应边成比例关系从而求出O半径的长【详解】解:(
14、1)连接OA,OA=OD,1=1DA平分BDE,1=21=2OADEOAE=4,AECD,4=90OAE=90,即OAAE又点A在O上,AE是O的切线(1)BD是O的直径,BAD=903=90,BAD=3又1=2,BADAED,BA=4,AE=1,BD=1AD在RtBAD中,根据勾股定理,得BD=O半径为19、作图见解析.【解析】由题意可知,先作出ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.【详解】点P到ABC两边的距离相等,点P在ABC的平分线上;线段BD为等腰PBD的底边,PB=PD,点P在线段BD的垂直平分线上,点P是ABC的平分线与线段BD的垂直平分线的交点,如图所示:【
15、点睛】此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.20、小亮说的对,理由见解析【解析】先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.【详解】2(x+1)2(4x5)=2x2+4x+24x+5,=2x2+7,当x=时,原式=+7=7;当x=时,原式=+7=7故小亮说的对【点睛】本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.21、(1)(,2);(2)y(x)22;【解析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质
16、得出BD=AD=,从而求出点B的坐标,代入即可得解;分别求出当BAC=60时,当BAC=120时m的值,即可得出m的取值范围【详解】(1)将抛物线G1:ymx22(m0)向右平移个单位长度后得到抛物线G2,抛物线G2:ym(x)22,点A是抛物线G2的顶点.点A的坐标为(,2)(2)设抛物线对称轴与直线l交于点D,如图1所示点A是抛物线顶点,ABACBAC90,ABC为等腰直角三角形,CDAD,点C的坐标为(2,)点C在抛物线G2上,m(2)22,解得:依照题意画出图形,如图2所示同理:当BAC60时,点C的坐标为(1,);当BAC120时,点C的坐标为(3,)60BAC120,点(1,)在抛
17、物线G2下方,点(3,)在抛物线G2上方,解得:【点睛】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.22、10【解析】【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.【详解】原式=1+9-+4=10-+=10.【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.23、(1)见解析;(
18、2)成立;(3)【解析】(1)根据圆周角定理求出ACB=90,求出ADC=90,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出BOC=2A,求出OBC=90-A和ACD=90-A即可;(3)分别延长AE、CD交O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交O于N,连接CN、AN,求出关于a的方程,再求出a即可【详解】(1)证明:AB为直径,于D,;(2)成立,证明:连接OC,由圆周角定理得:,;(3)分别延长AE、CD交O于H、K,连接HK、CH、AK,根据圆周角定理得:,由三角形内角和定理得:,同理,在AD上取,延长CG交AK于M,则,延长K
19、O交O于N,连接CN、AN,则,四边形CGAN是平行四边形,作于T,则T为CK的中点,O为KN的中点,由勾股定理得:,作直径HS,连接KS,由勾股定理得:,设,解得:,【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大24、0【解析】根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角函数值计算,然后进行加减运算【详解】原式=-2+2-2+3=0.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式也考查了零指数幂、负整数指数幂和特殊角的三角函数值