《2023届江苏省扬州市教育科研究院重点达标名校中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省扬州市教育科研究院重点达标名校中考数学考前最后一卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若x2y+10,则2x4y8等于()A1B4C8D162港珠澳大桥目前是全世界最长的跨海大桥,其主体
2、工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A35.578103B3.5578104C3.5578105D0.355781053若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y图象上的点,并且y10y2y3,则下列各式中正确的是()Ax1x2x3Bx1x3x2Cx2x1x3Dx2x3x14一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是( )ABCD5如图,将ABC绕点A逆时针旋转一定角度,得到ADE,若CAE=65,E=70,且ADBC,BAC的度数为( )A60 B75C85D906函数yax+b与ybx+a的图象在同一坐标系内的大致位
3、置是()ABCD7如图是一个由5个相同的正方体组成的立体图形,它的主视图是()ABCD8据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A5.3103B5.3104C5.3107D5.31089若关于x的不等式组恰有3个整数解,则字母a的取值范围是()Aa1B2a1Ca1D2a110下图是由八个相同的小正方体组合而成的几何体,其左视图是( )ABCD11下列各数中,无理数是()A0BCD12如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A(a+
4、b)(ab)a2b2B(ab)2a22ab+b2C(a+b)2a2+2ab+b2D(a+b)2(ab)2+4ab二、填空题:(本大题共6个小题,每小题4分,共24分)13若分式的值为正,则实数的取值范围是_.14分解因式:ax22ax+a=_15一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_16在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_m17如图,每个小正方形边长为1,则ABC边AC上的高BD的长为_18如图,矩形ABCD中,E为BC的中点,将ABE沿直线AE折叠时点B落在点F处,连接FC,若DAF18,则DCF_度三、解答题
5、:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.20(6分
6、)如图,AB为O的直径,AC、DC为弦,ACD=60,P为AB延长线上的点,APD=30求证:DP是O的切线;若O的半径为3cm,求图中阴影部分的面积21(6分)下面是“作三角形一边上的高”的尺规作图过程已知:ABC求作:ABC的边BC上的高AD作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D所以线段AD就是所求作的高请回答:该尺规作图的依据是_22(8分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(4,0)求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的
7、面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标23(8分)已知:a是2的相反数,b是2的倒数,则(1)a=_,b=_;(2)求代数式a2b+ab的值24(10分)如图,AB、AD是O的弦,ABC是等腰直角三角形,ADCAEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BFAC25(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米
8、,篮板底部支架HF与支架AF所成的角FHE=60,求篮框D到地面的距离(精确到0.01米).(参考数据:cos750.2588, sin750.9659,tan753.732,) 26(12分)计算:.27(12分)如图,梯形ABCD中,ADBC,AEBC于E,ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F(1)求证:CD与O相切;(2)若BF=24,OE=5,求tanABC的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】先把原式化为2x22y23的形式,再根据同底数幂的乘法及
9、除法法则进行计算即可【详解】原式2x22y23,2x2y+3,22,1故选:B【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x22y23的形式是解答此题的关键2、B【解析】科学计数法是a,且,n为原数的整数位数减一【详解】解:35578= 3.5578,故选B【点睛】本题主要考查的是利用科学计数法表示较大的数,属于基础题型理解科学计数法的表示方法是解题的关键3、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y10y2y3判断出三点所在的象限,故可得出结论【详解】解:反比例函数y中k10,此函数的图象在二、四象限,且在每一象限内y
10、随x的增大而增大,y10y2y3,点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,x2x3x1故选:D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键4、B【解析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2(|k|)=1故选B【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数
11、形结合的思想,做此类题一定要正确理解k的几何意义图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|5、C【解析】试题分析:根据旋转的性质知,EAC=BAD=65,C=E=70如图,设ADBC于点F则AFB=90,在RtABF中,B=90-BAD=25,在ABC中,BAC=180-B-C=180-25-70=85,即BAC的度数为85故选C考点: 旋转的性质.6、B【解析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案【详解】分四种情况:当a0,b0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,
12、无选项符合;当a0,b0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合故选B【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:当k0,b0,函数y=kx+b的图象经过第一、二、三象限;当k0,b0,函数y=kx+b的图象经过第一、三、四象限;当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;当k
13、0,b0时,函数y=kx+b的图象经过第二、三、四象限7、A【解析】画出从正面看到的图形即可得到它的主视图【详解】这个几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值0,x0,故答案为x0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.14、a(x-1)1【解析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解【详解】解:ax1-1ax+a,=a(x1-1x+1),=a(x-1)
14、1【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止15、60或120【解析】首先根据题意画出图形,过点O作ODAB于点D, 通过垂径定理, 即可推出AOD的度数, 求得AOB的度数, 然后根据圆周角定理,即可推出AMB和ANB的度数.【详解】解:如图:连接OA,过点O作ODAB 于点D,OA=2,AB=,AD=BD=,AD:OA=:2,AOD=, AOB=,AMB=,ANB=.故答案为: 或.【点睛】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.16、1【解析】分
15、析:根据同时同地的物高与影长成正比列式计算即可得解详解:设这栋建筑物的高度为xm,由题意得,解得x=1,即这栋建筑物的高度为1m故答案为1点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想17、【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:SABC=24=4,且SABC=ACBD=5BD,5BD=4,解得:BD=.考点:1.网格型问题;2.勾股定理;3
16、.三角形的面积18、1【解析】由折叠的性质得:FEBE,FAEBAE,AEBAEF,求出BAEFAE1,由直角三角形的性质得出AEFAEB54,求出CEF72,求出FECE,由等腰三角形的性质求出ECF54,即可得出DCF的度数【详解】解:四边形ABCD是矩形,BADBBCD90,由折叠的性质得:FEBE,FAEBAE,AEBAEF,DAF18,BAEFAE(9018)1,AEFAEB90154,CEF18025472,E为BC的中点,BECE,FECE,ECF(18072)54,DCF90ECF1.故答案为1【点睛】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三
17、角形内角和定理等知识点,求出ECF的度数是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元(2)有6种购买方案(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台【解析】(1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;(3)因为公司要求每
18、月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可【详解】(1)设甲、乙两种型号设备每台的价格分别为万元和万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备台,乙型设备台,则,,取非负整数,有6种购买方案;(3)由题意:,为4或5,当时,购买资金为:(万元),当时,购买资金为:(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.20、(1)证明见解析;(2)
19、.【解析】(1)连接OD,求出AOD,求出DOB,求出ODP,根据切线判定推出即可(2)求出OP、DP长,分别求出扇形DOB和ODP面积,即可求出答案【详解】解:(1)证明:连接OD,ACD=60,由圆周角定理得:AOD=2ACD=120DOP=180120=60APD=30,ODP=1803060=90ODDPOD为半径,DP是O切线(2)ODP=90,P=30,OD=3cm,OP=6cm,由勾股定理得:DP=3cm图中阴影部分的面积21、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分
20、AE,然后根据三角形高的定义得到AD为高【详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.22、(1)(1)S=m14m+4(4m0)(3)(3,1)、(,1)、(,1)【解析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(1)先过点D作DHx轴于
21、点H,运用割补法即可得到:四边形OCDA的面积=ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标【详解】(1)A(4,0)在二次函数y=ax1x+1(a0)的图象上,0=16a+6+1,解得a=,抛物线的函数解析式为y=x1x+1;点C的坐标为(0,1),设直线AC的解析式为y=kx+b,则,解得,直线AC的函数解析式为:;(1)点D(m,n)是抛物线在第二象限的部分上的一动点,D(m,m1m+1),过点D作
22、DHx轴于点H,则DH=m1m+1,AH=m+4,HO=m,四边形OCDA的面积=ADH的面积+四边形OCDH的面积,S=(m+4)(m1m+1)+(m1m+1+1)(m),化简,得S=m14m+4(4m0);(3)若AC为平行四边形的一边,则C、E到AF的距离相等,|yE|=|yC|=1,yE=1当yE=1时,解方程x1x+1=1得,x1=0,x1=3,点E的坐标为(3,1);当yE=1时,解方程x1x+1=1得,x1=,x1=,点E的坐标为(,1)或(,1);若AC为平行四边形的一条对角线,则CEAF,yE=yC=1,点E的坐标为(3,1)综上所述,满足条件的点E的坐标为(3,1)、(,1
23、)、(,1)23、2 【解析】试题分析:利用相反数和倒数的定义即可得出.先因式分解,再代入求出即可.试题解析:是的相反数,是的倒数,当时, 点睛:只有符号不同的两个数互为相反数.乘积为的两个数互为倒数.24、见解析.【解析】(1)画出O的两条直径,交点即为圆心O(2)作直线AO交O于F,直线BF即为所求【详解】解:作图如下:(1);(2).【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型25、3.05米.【解析】延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】延长FE交CB的延长线于M,过A作AGFM于G,在RtAB
24、C中,tanACB=,AB=BCtan75=0.603.732=2.2392,GM=AB=2.2392,在RtAGF中,FAG=FHD=60,sinFAG=,sin60=,FG=2.165,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米考点:解直角三角形的应用26、 【解析】【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式= =.【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.27、(1)证明见解析;(2)【解析】试题分析:(1)过点O作OGDC,垂足为G先证明OAD=90,从而得到OAD=OG
25、D=90,然后利用AAS可证明ADOGDO,则OA=OG=r,则DC是O的切线;(2)连接OF,依据垂径定理可知BE=EF=1,在RtOEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在RtABE中,利用锐角三角函数的定义求解即可试题解析:(1)证明:过点O作OGDC,垂足为GADBC,AEBC于E,OAADOAD=OGD=90在ADO和GDO中,ADOGDOOA=OGDC是O的切线(2)如图所示:连接OFOABC,BE=EF= BF=1在RtOEF中,OE=5,EF=1,OF=,AE=OA+OE=13+5=2tanABC.【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键