2023届湖北省武汉市外国语校中考数学最后冲刺浓缩精华卷含解析.doc

上传人:lil****205 文档编号:87839778 上传时间:2023-04-18 格式:DOC 页数:19 大小:678.50KB
返回 下载 相关 举报
2023届湖北省武汉市外国语校中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共19页
2023届湖北省武汉市外国语校中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届湖北省武汉市外国语校中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖北省武汉市外国语校中考数学最后冲刺浓缩精华卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, SAEF=3,则SFCD为()A6B9C12D272已知反比例函数,下列结论不正确的是(

2、)A图象必经过点(1,2)By随x的增大而增大C图象在第二、四象限内D若,则3下列判断错误的是( )A对角线相等的四边形是矩形B对角线相互垂直平分的四边形是菱形C对角线相互垂直且相等的平行四边形是正方形D对角线相互平分的四边形是平行四边形4已知关于x的不等式组12x+b1的解满足0x2,则b满足的条件是()A0b2B3b1C3b1Db=1或35如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;其中正确结论的是( )ABCD6对于下列调查:对从某国进口的香蕉进行检验检疫;审查

3、某教科书稿;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D7下列四个图形中既是轴对称图形,又是中心对称图形的是()ABCD8如图,则的大小是ABCD9某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )A144(1x)2=100B100(1x)2=144C144(1+x)2=100D100(1+x)2=14410计算(18)9的值是( )A-9B-27C-2D2二、填空题(本大题共6个小题,每小题3分,共18分)11七边形的外角和等于_12如图,在中,,为边的高,点

4、在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动连接,线段的长随的变化而变化,当最大时,_.当的边与坐标轴平行时,_.13如图,中,则 _14已知O的面积为9cm2,若点O到直线L的距离为cm,则直线l与O的位置关系是_15如图,AB为0的弦,AB=6,点C是0上的一个动点,且ACB=45,若点M、N分别是AB、BC的中点,则MN长的最大值是_ 16如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 三

5、、解答题(共8题,共72分)17(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒乓球36排球足球12请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?18(8分)在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4),B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0)

6、,将二次函数的图象沿射线DA方向平移,使图象再次经过点B求平移后图象顶点E的坐标;直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积19(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元设销售单价x(元),每日销售量y(件)每日的利润w(元)在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19202130(件)62605840(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间

7、的函数表达式(利润(销售单价成本单价)销售件数)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?20(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售设每天销售量为y本,销售单价为x元请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册

8、销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?21(8分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC中,点O在线段BC上,BAO=30,OAC=75,AO=,BO:CO=1:3,求AB的长经过社团成员讨论发现,过点B作BDAC,交AO的延长线于点D,通过构造ABD就可以解决问题(如图2)请回答:ADB= ,AB= 请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,ACAD,AO=,ABC=ACB=75,BO:OD=1:3,求DC的长22(10分)菏泽市牡

9、丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?23(12分)已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA若OCP与PDA的面积比为1:4,求边CD的长如图2,在()的条件下,擦去折痕AO、线段OP,连接BP动点M在线段AP上(点M与点P、

10、A不重合),动点N在线段AB的延长线上,且BNPM,连接MN交PB于点F,作MEBP于点E试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律若不变,求出线段EF的长度24山地自行车越来越受中学生的喜爱一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?参考答案一、选择题(共10小题,每小题3分,共30分)1、

11、D【解析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出AEFCDF,由相似三角形的性质即可得出结论.【详解】解:四边形ABCD是平行四边形,AE:EB=1:2,AE:CD=1:3,ABCD,EAF=DCF,DFC=AFE,AEFCDF,SAEF=3,()2,解得SFCD=1故选D.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.2、B【解析】试题分析:根据反比例函数y=的性质,当k0时,在每一个象限内,函数值y随自变量x的增大而减小;当k0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断试题解析:

12、A、(-1,2)满足函数的解析式,则图象必经过点(-1,2); B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误; C、命题正确; D、命题正确故选B考点:反比例函数的性质3、A【解析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大

13、4、C【解析】根据不等式的性质得出x的解集,进而解答即可【详解】-12x+b1,关于x的不等式组-12x+b1的解满足0x2,解得:-3b-1,故选C【点睛】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集5、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角

14、形的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=BAD=90,E、F分别为边AB,B

15、C的中点,AE=BF=BC,在ABF和DAE中, ,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BAF=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=AF-AM=,AM=MF,故正确;如图

16、,过点M作MNAB于N,则 即 解得MN=,AN=,NB=AB-AN=2a-=,根据勾股定理,BM=过点M作GHAB,过点O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,BM2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键6、B【解析】根据普查得到的调查结果比较准确,但所费人

17、力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】对从某国进口的香蕉进行检验检疫适合抽样调查;审查某教科书稿适合全面调查;中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查7、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不

18、是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、D【解析】依据,即可得到,再根据,即可得到【详解】解:如图,又,故选:D【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等9、D【解析】试题分析:2013年的产量=2011年的产量(1+年平均增长率)2,把相关数值代入即可解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为1

19、00(1+x)2=144,故选D点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键10、C【解析】直接利用有理数的除法运算法则计算得出答案【详解】解:(-18)9=-1故选:C【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、360【解析】根据多边形的外角和等于360度即可求解【详解】解:七边形的外角和等于360故答案为360【点睛】本题考查了多边形的内角和外角的知识,属于基础题,解题的关键是掌握多边形的外角和等于36012、4 【解析】(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后

20、根据当O,D,C共线时,OC取最大值求解即可;(2)根据等腰三角形的性质求出CD,分ACy轴、BCx轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【详解】(1),当O,D,C共线时,OC取最大值,此时ODAB.,AOB为等腰直角三角形, ;(2)BC=AC,CD为AB边的高,ADC=90,BD=DA=AB=4,CD=3,当ACy轴时,ABO=CAB,RtABORtCAD,即,解得,t=,当BCx轴时,BAO=CBD,RtABORtBCD,即,解得,t= ,则当t=或时,ABC的边与坐标轴平行故答案为t=或【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质

21、,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键13、17【解析】RtABC中,C=90,tanA= ,AC8,AB= =17,故答案为17.14、相离【解析】设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离比较即可【详解】设圆O的半径是r,则r2=9,r=3,点0到直线l的距离为,3,即:rd,直线l与O的位置关系是相离,故答案为:相离.【点睛】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当rd时相离;当r=d时相切;当rd时相交15、3【解析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得

22、最大值【详解】解:因为点M、N分别是AB、BC的中点,由三角形的中位线可知:MN=AC,所以当AC最大为直径时,MN最大这时B=90又因为ACB=45,AB=6 解得AC=6MN长的最大值是3故答案为:3【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大16、【解析】设扇形的圆心角为n,则根据扇形的弧长公式有: ,解得 所以三、解答题(共8题,共72分)17、 (1)24,1;(2) 54;(3)360.【解析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数

23、减去其它组的人数求得b;(2)利用360乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解【详解】(1)抽取的人数是3630%120(人),则a12020%24,b120302436121故答案是:24,1;(2)“排球”所在的扇形的圆心角为36054,故答案是:54;(3)全校总人数是12010%1200(人),则选择参加乒乓球运动的人数是120030%360(人)18、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;AB扫过的面积是平行四边形ABGE,

24、根据S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的抛物线表达式为y(xm)2+m+4,又平移后的抛物线过点B

25、(2,0),将其代入得,(2m)2+m+40,解得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK79

26、24552455638251答:图象A,B两点间的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.19、(1)y2x+100,w2x2+136x1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元【解析】(1)观察表中数据,发现y与x之间存在一次函数关系,设ykx+b列方程组得到y关于x的函数表达式y2x+100,根据题意得到w2x2+136x1800;(2)把w2x2+136x1800配方得到w2(x34)2+1根据二次函数

27、的性质即可得到结论;(3)根据题意列方程即可得到即可【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设ykx+b则,解得,y2x+100,y关于x的函数表达式y2x+100,w(x18)y(x18)(2x+100)w2x2+136x1800;(2)w2x2+136x18002(x34)2+1当销售单价为34元时,每日能获得最大利润1元;(3)当w350时,3502x2+136x1800,解得x25或43,由题意可得25x32,则当x32时,18(2x+100)648,制造这种纪念花灯每日的最低制造成本需要648元【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式20、

28、(1)y=10x+740(44x52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元【解析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x44)元,每天销售量减少10(x44)本,所以y=30010(x44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x40)(10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x40)(10x+

29、740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可【详解】(1)y=30010(x44),即y=10x+740(44x52);(2)根据题意得(x40)(10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x40)(10x+740)=10x2+1140x29600=10(x57)2+2890,当x57时,w随x的增大而增大,而44x52,所以当x=52时,w有最大值,最大值为10(5257)2+2890=2640,答:将足球纪念册销售单价定为52元

30、时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元【点睛】本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围21、(1)75;4;(2)CD=4【解析】(1)根据平行线的性质可得出ADB=OAC=75,结合BOD=COA可得出BODCOA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出ABD=75=ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BEAD交AC于点E,同(1)可得出AE=

31、4,在RtAEB中,利用勾股定理可求出BE的长度,再在RtCAD中,利用勾股定理可求出DC的长,此题得解【详解】解:(1)BDAC,ADB=OAC=75BOD=COA,BODCOA,又AO=3,OD=AO=,AD=AO+OD=4BAD=30,ADB=75,ABD=180-BAD-ADB=75=ADB,AB=AD=4(2)过点B作BEAD交AC于点E,如图所示ACAD,BEAD,DAC=BEA=90AOD=EOB,AODEOB,BO:OD=1:3,AO=3,EO=,AE=4ABC=ACB=75,BAC=30,AB=AC,AB=2BE在RtAEB中,BE2+AE2=AB2,即(4)2+BE2=(2

32、BE)2,解得:BE=4,AB=AC=8,AD=1在RtCAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度22、(1)甲80件,乙20件;(2)x90【解析】(1)甲种奖品购买了x件,乙种奖品购买了(100x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【详解】解:(1)设甲种奖品购

33、买了x件,乙种奖品购买了(100x)件,根据题意得30x+20(100x)=2800,解得x=80,则100x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x件,乙种奖品购买了(100x)件,根据题意得:30x+20(100x)2900,解得:x90,【点睛】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.23、(1)10;(2). 【解析】(1)先证出C=D=90,再根据1+3=90,1+2=90,得出2=3,即可证出OCPPDA;根据OCP与PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8x,由

34、勾股定理得 x2=(8x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQAN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MEPQ,得出EQ=PQ,根据QMF=BNF,证出MFQNFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF的长度不变【详解】(1)如图1,四边形ABCD是矩形, C=D=90,1+3=90,由折叠可得APO=B=90,1+2=90,2=3, 又D=C,OCPPDA; OCP与PDA的面积比为1:4, , CP=AD=4设OP=x,则CO=8x,在RtPCO中,C=90,由勾股定理

35、得 x2=(8x)2+42,解得:x=5,AB=AP=2OP=10,边CD的长为10; (2)作MQAN,交PB于点Q,如图2,AP=AB,MQAN,APB=ABP=MQPMP=MQ,BN=PM,BN=QM MP=MQ,MEPQ,EQ=PQMQAN,QMF=BNF,MFQNFBQF=FB,EF=EQ+QF=(PQ+QB)=PB, 由(1)中的结论可得:PC=4,BC=8,C=90,PB=,EF=PB=2, 在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出

36、全等和相似的三角形24、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元【解析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价进价,即可得出关于y的一元一次方程,解之即可得出结论【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900(110%)y=35%y,解得:y=600,答:每辆山地自行车的进价是600元【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁