《2023届辽宁省大连重点达标名校中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届辽宁省大连重点达标名校中考数学最后一模试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各运算中,计算正确的是( )ABCD2直线AB、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定3下列计算正确的是(
2、)A2x+3x=5xB2x3x=6xC(x3)2=5Dx3x2=x4如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A点A与点BB点A与点DC点B与点DD点B与点C5共享单车为市民短距离出行带来了极大便利据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A259104B25.9105C2.59106D0.2591076某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )ABCD7小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图根据图中信息,下列说法:这栋居民楼共有居民
3、140人每周使用手机支付次数为2835次的人数最多有的人每周使用手机支付的次数在3542次每周使用手机支付不超过21次的有15人其中正确的是( )ABCD8已知x=2,则代数式(7+4)x2+(2+)x+ 的值是()A0BC2+D29若正比例函数y=3x的图象经过A(2,y1),B(1,y2)两点,则y1与y2的大小关系为()Ay1y2By1y2Cy1y2Dy1y210若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:ABCD11下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是( )年龄/岁13141516频数515x10- xA平均数、中位数
4、B众数、方差C平均数、方差D众数、中位数12在数轴上表示不等式2(1x)4的解集,正确的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13中,高,则的周长为_。14化简:=_;=_;=_15如图,每个小正方形边长为1,则ABC边AC上的高BD的长为_16如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_17长城的总长大约为6700000m,将数6700000用科学记数法表示为_18如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则
5、值为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,抛物线yx2+5x+n经过点A(1,0),与y轴交于点B(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且PAB是以AB为腰的等腰三角形,试求P点坐标20(6分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下成绩/分1201111101011009190以下成绩等级ABCD请根据以上信息解答下列问题:(1)这次统计共抽取了 名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学
6、成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?21(6分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使BEDC(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC8,cosBED,求AD的长22(8分)某商品的进价为每件50元当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件在确保盈利的前提下,解答下列问题:(1)
7、若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?23(8分)2019年8月山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态太职学院足球场作为一个重要比赛场馆占地面积约24300平方米总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了结来比原计划提前4天完成安装任务求原计划每天安装多少个座位24(10分)某商场以每件280
8、元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?25(10分)如图,ABC内接于O,且AB为O的直径,ODAB,与AC交于点E,与过点C的O的切线交于点D若AC=4,BC=2,求OE的长试判断A与CDE的数量关系,并说明理由26(12分)某初中学校组织200位同学参加义务植树活动甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进
9、行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况 每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况 每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;(2)你认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?27(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现
10、,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断【详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项正确;故选:D【点睛】本题考查了同底数幂的乘法、除法法则,幂
11、的乘方法则以及完全平方公式,正确理解法则是关键2、A【解析】根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AOD,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答3、A【解析】依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可【详解】A、2x3x5x,故A正确;B、2x3x6x2,故B错误;C、(x3)2x6,故C错误;D、x3与x2不是同类项,不能合并,故D错误故选A【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键4、A【解析】试题分析:主要考查
12、倒数的定义和数轴,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数故选A考点:1倒数的定义;2数轴5、C【解析】绝对值大于1的正数可以科学计数法,a10n,即可得出答案.【详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【点睛】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.6、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用
13、的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】,故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、B【解析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:这栋居民楼共有居民3101522302520125人,此结论错误;每周使用手机支付次数为2835次的人数最多,此结论正确;每周使用手机支付的次数在3542次所占比例为,此结论
14、正确;每周使用手机支付不超过21次的有3101528人,此结论错误;故选:B【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据8、C【解析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2时,(7+4)x2+(2+)x+ (7+4)(2)2+(2+)(2)+ (7+4)(7-4)+1+ 49-48+1+2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算9、A【解析】分别把点A(1,y1),点B(1,y1)代入函数y3x,求出点y1,y1的值,并比较出其大小即可【详解】解:点A(1,y1),点
15、B(1,y1)是函数y3x图象上的点,y16,y13,36,y1y1故选A【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式10、B【解析】由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数的图象过一二四象限,故答案选B.11、D【解析】由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.【详解】年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,合唱团成员的年龄的中位数是14,
16、众数也是14,这两个统计量不会随着x的变化而变化.故选D.12、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集 2(1 x)4去括号得:224移项得:2x2,系数化为1得:x1,故选A “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变二、填空题:(本大题共6个小题,每小题4分,共24分)13、32或42【解析】根据题意,分两种情况讨论:若ACB是锐角,若ACB是钝角,分别画出图形,利用勾股定理,即可求解.【详解】分两
17、种情况讨论:若ACB是锐角,如图1,高, 在RtABD中,即:,同理:,的周长=9+5+15+13=42,若ACB是钝角,如图2,高, 在RtABD中,即:,同理:,的周长=9-5+15+13=32,故答案是:32或42. 【点睛】本题主要考查勾股定理,根据题意,画出图形,分类进行计算,是解题的关键.14、4 5 5 【解析】根据二次根式的性质即可求出答案【详解】原式=4;原式=5;原式=5,故答案为:4;5;5【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型15、【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面
18、积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:SABC=24=4,且SABC=ACBD=5BD,5BD=4,解得:BD=.考点:1.网格型问题;2.勾股定理;3.三角形的面积16、【解析】由点A(1,1),可得OA的长,点A在第一象限的角平分线上,可得AOB=45,再根据弧长公式计算即可【详解】A(1,1),OA=,点A在第一象限的角平分线上,以点O为旋转中心,将点A逆时针旋转到点B的位置,AOB=45,的长为=,故答案为:【点睛】本题考查坐标与图形变化旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的
19、关键.本题中求出OA=以及AOB=45也是解题的关键17、6.7106【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:6700000用科学记数法表示应记为6.7106,故选6.7106.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为ax10n的形式,其中1|a|0,且x0,0x20.(2)y=20x2+100x+6000=20(x)2+6125,当x=时,y取得最大值,最大值为6125,答:当降价2.5元
20、时,每星期的利润最大,最大利润是6125元.【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.23、原计划每天安装100个座位【解析】根据题意先设原计划每天安装x个座位,列出方程再求解.【详解】解:设原计划每天安装个座位,采用新技术后每天安装个座位, 由题意得: 解得: 经检验:是原方程的解 答:原计划每天安装100个座位【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.24、 (1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元
21、,由销售问题的数量关系“每件商品的利润商品的销售数量=总利润”列出方程,解方程即可解决问题试题解析:(1)由题意得60(360280)4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360x280)(5x60)7200,解得x18,x260.要更有利于减少库存,则x60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键25、(1);(2)CDE=2A【解析】(1)在RtABC中,由勾股定理得到AB的长,从而
22、得到半径AO 再由AOEACB,得到OE的长;(2)连结OC,得到1=A,再证3=CDE,从而得到结论【详解】(1)AB是O的直径,ACB=90,在RtABC中,由勾股定理得:AB=,AO=AB=ODAB,AOE=ACB=90,又A=A,AOEACB,OE=.(2)CDE=2A理由如下:连结OC,OA=OC,1=A,CD是O的切线,OCCD,OCD=90,2+CDE=90,ODAB,2+3=90,3=CDE3=A+1=2A,CDE=2A考点:切线的性质;探究型;和差倍分26、(1)9,9;(2)乙;(3)1680棵;【解析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,
23、如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可【详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(36+67+38+129+610)30200=1680(棵),答:本次活动200位同学一共植树1680棵【点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性27、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元【解析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.由总利润=数量单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【详解】(1).(2) 根据题意,得: 当时,随x的增大而增大当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.