《2023届陕西省西安市长安中学十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届陕西省西安市长安中学十校联考最后数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是由四个相同的小正方体堆成的物体,它的正视图是()ABCD2|3|的值是( )A3BC3D3随着“中国诗词大会”节目的热播,唐诗宋词精选一书也随之热销如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A一次性购买数量不超过10本时,销售价格为20元/本Ba520C一次性购买10本以上时,超过10本的那部分书的价格打八折D一次性购买20本比分两次购买且每次购买10本少花80元4甲、乙两人在笔直的湖边公路上同
3、起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:甲步行的速度为60米/分;乙走完全程用了32分钟;乙用16分钟追上甲;乙到达终点时,甲离终点还有300米其中正确的结论有()A1个B2个C3个D4个5如图所示的四边形,与选项中的一个四边形相似,这个四边形是()ABCD6某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A10,1B7,
4、8C1,6.1D1,67已知反比例函数y=的图象在一、三象限,那么直线y=kxk不经过第()象限A一B二C三D四8方程的解是( )ABCD9下列四个函数图象中,当x0时,函数值y随自变量x的增大而减小的是( )ABCD10某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件其中甲种奖品每件40元,乙种奖品每件30元如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件设购买甲种奖品x件,乙种奖品y件依题意,可列方程组为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知二次函数yax2+bx+c(a0)的图象与x轴交于(x1,0),且1x10
5、,对称轴x1如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+bm(am+b)(m1的实数)其中所有结论正确的是_(填写番号)12一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_13分解因式:2x2-8x+8=_.14如图,点E在正方形ABCD的外部,DCE=DEC,连接AE交CD于点F,CDE的平分线交EF于点G,AE=2DG若BC=8,则AF=_15在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_环的成绩16如图,在
6、菱形ABCD中,于E,则菱形ABCD的面积是_17若方程x24x+10的两根是x1,x2,则x1(1+x2)+x2的值为_三、解答题(共7小题,满分69分)18(10分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0t10,B:10t20,C:20t30,D:t30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率19(5分)在ABC中,AB=ACBC
7、,点D和点A在直线BC的同侧,BD=BC,BAC=,DBC=,且+=110,连接AD,求ADB的度数(不必解答)小聪先从特殊问题开始研究,当=90,=30时,利用轴对称知识,以AB为对称轴构造ABD的轴对称图形ABD,连接CD(如图1),然后利用=90,=30以及等边三角形等相关知识便可解决这个问题请结合小聪研究问题的过程和思路,在这种特殊情况下填空:DBC的形状是 三角形;ADB的度数为 在原问题中,当DBCABC(如图1)时,请计算ADB的度数;在原问题中,过点A作直线AEBD,交直线BD于E,其他条件不变若BC=7,AD=1请直接写出线段BE的长为 20(8分)如图,在中,的垂直平分线交
8、于,交于,射线上,并且()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论21(10分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG6米,GC53米请你根据以上数据,
9、计算舍利塔的高度AB22(10分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值23(12分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率图表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象图分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?24(14分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必
10、须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同若前四局双方战成2:2,那么甲队最终获胜的概率是_;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图2、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的
11、绝对值等于它的相反数.3、D【解析】A、根据单价总价数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价总价数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其前十本的单价即可得出C正确;B、根据总价200+超过10本的那部分书的数量16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误此题得解【详解】解:A、2001020(元/本),一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、(840200)(5010)16(元/本),16200.8,一次性购买10本以上时,超过10本的那部分书的价格打八折
12、,C选项正确;B、200+16(3010)520(元),a520,B选项正确;D、200220016(2010)40(元),一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误故选D【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键4、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题【详解】由图可得,甲步行的速度为:2404=60米/分,故正确,乙走完全程用的时间为:2400(166012)=30(分钟),故错误,乙追上甲用的时间为:164=12(分钟),故错误,乙到达终点时,甲离终点距离是:
13、2400(4+30)60=360米,故错误,故选A【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.5、D【解析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可【详解】解:作AEBC于E,则四边形AECD为矩形,EC=AD=1,AE=CD=3,BE=4,由勾股定理得,AB=5,四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键6、D【解析】根据中位数的定义即可求出x的值,然后根据众数
14、的定义和平均数公式计算即可【详解】解:这11个数据的中位数是第8个数据,且中位数为1,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为万元故选:【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键7、B【解析】根据反比例函数的性质得k0,然后根据一次函数的进行判断直线y=kx-k不经过的象限【详解】反比例函数y=的图象在一、三象限,k0,直线y=kxk经过第一、三、四象限,即不经过第二象限故选:B【点睛】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k
15、为常数,k0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式也考查了反比例函数与一次函数的性质8、D【解析】按照解分式方程的步骤进行计算,注意结果要检验.【详解】解:经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.9、D【解析】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x0时,y随x的增大而
16、减小;故本选项正确故选 D【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.10、A【解析】根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题【详解】解:由图象可得,抛物线开口向
17、下,则a0,对称轴在y轴右侧,则与a的符号相反,故b0.a0,b0,c0,abc0,故错误,当x=-1时,y=a-b+c0,得ba+c,故错误,二次函数y=ax2+bx+c(a0)的图象与x轴交于(x1,0),且-1x10,对称轴x=1,x=2时的函数值与x=0的函数值相等,x=2时,y=4a+2b+c0,故正确,x=-1时,y=a-b+c0,-=1,2a-2b+2c0,b=-2a,-b-2b+2c0,2c3b,故正确,由图象可知,x=1时,y取得最大值,此时y=a+b+c,a+b+cam2+bm+c(m1),a+bam2+bma+bm(am+b),故正确,故答案为:【点睛】本题考查二次函数图
18、象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答12、 【解析】分析:根据概率的计算公式颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb所以颜色搭配正确的概率是故答案为:点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=13、2(x-2)2【解析】先运用提公因式法,再运用完全平方公式.【详解
19、】:2x2-8x+8=. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.14、【解析】如图作DHAE于H,连接CG设DG=x,DCE=DEC,DC=DE,四边形ABCD是正方形,AD=DC,ADF=90,DA=DE,DHAE,AH=HE=DG,在GDC与GDE中,GDCGDE(SAS),GC=GE,DEG=DCG=DAF,AFD=CFG,ADF=CGF=90,2GDE+2DEG=90,GDE+DEG=45,DGH=45,在RtADH中,AD=8,AH=x,DH=x,82=x2+(x)2,解得:x=,ADHAFD,,AF=4故答案为415、8【
20、解析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x环,根据题意列出一元一次不等式62+x+21089解之,得x7x表示环数,故x为正整数且x7,则x的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”不等式,再由不等式的相关知识确定问题的答案.16、【解析】根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CDAE,可求菱形ABCD的面积【详解】sinD= AD=11四边形ABCD是菱形AD=CD=11菱形ABCD的面积=118=96cm
21、1故答案为:96cm1【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键17、5【解析】由题意得, ,.原式 三、解答题(共7小题,满分69分)18、(1)50;(2)108;(3)【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案本题解析:解:(1)调查的总人数是:1938%50(人)C组的人数有501519412(人),补全条形图如图所示(2)画树状图如下共有12种等可能
22、的结果,恰好选中甲的结果有6种,P(恰好选中甲)点睛:本题考查了列表法与树状图、条形统计图的综合运用熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键19、(1)DBC是等边三角形,ADB=30(1)ADB=30;(3)7+或7【解析】(1)如图1中,作ABDABD,BDBD,连接CD,AD,由ABDABD,推出DBC是等边三角形;借助的结论,再判断出ADBADC,得ADBADC,由此即可解决问题(1)当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1)(3)第种情况:当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证
23、明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第种情况:当060时,如图4中,作ABDABD,BDBD,连接CD,AD证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论【详解】(1)如图1中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,BAC=90,ABC=45,DBC=30,ABD=ABCDBC=15,在ABD和ABD中,ABDABD,ABD=ABD=15,ADB=ADB,DBC=ABD+ABC=60,BD=BD,BD=BC,BD=BC,DBC是等边三角形,DBC是等边三角形,DB=DC,BDC=60,在ADB和ADC中,ADBADC
24、,ADB=ADC,ADB=BDC=30,ADB=30(1)DBCABC,60110,如图3中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,ABC=ACB,BAC=,ABC=(180)=90,ABD=ABCDBC=90,同(1)可证ABDABD,ABD=ABD=90,BD=BD,ADB=ADBDBC=ABD+ABC=90+90=180(+),+=110,DBC=60,由(1)可知,ADBADC,ADB=ADC,ADB=BDC=30,ADB=30(3)第情况:当60110时,如图31,由(1)知,ADB=30,作AEBD,在RtADE中,ADB=30,AD=1,DE=,BCD是等边三
25、角形,BD=BC=7,BD=BD=7,BE=BDDE=7;第情况:当060时,如图4中,作ABD=ABD,BD=BD,连接CD,AD同理可得:ABC=(180)=90,ABD=DBCABC=(90),同(1)可证ABDABD,ABD=ABD=(90),BD=BD,ADB=ADB,DBC=ABCABD=90(90)=180(+),DB=DC,BDC=60同(1)可证ADBADC,ADB=ADC,ADB+ADC+BDC=360,ADB=ADB=150,在RtADE中,ADE=30,AD=1,DE=,BE=BD+DE=7+,故答案为:7+或7【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质
26、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型20、(1)见解析;(2)见解析【解析】(1)求出EFAC,根据EFAC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CEAB,ACAB,推出 AC CE,根据菱形的判定推出即可.【详解】(1)证明:ACB90,DE是BC的垂直平分线,BDEACB90,EFAC,EFAC,四边形ACEF是平行四边形,AFCE;(2)当B30时,四边形ACEF是菱形,证明:B30,ACB90,ACAB,DE是BC的垂直平分线,BDDC,DEAC,BEAE,ACB90,CEAB,
27、CEAC,四边形ACEF是平行四边形,四边形ACEF是菱形,即当B30时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.21、55米【解析】由题意可知EDCEBA,FHCFBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.【详解】EDCEBA,FHCFBA,,即,AC=106米,又 ,AB=55米.答:舍利塔的高度AB为55米【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题
28、,利用相似三角形的性质建立方程解决问题22、原式=,把x=2代入的原式=1. 【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式= = 当x=2时,原式=123、(1)1件;(2)y甲=30t(0t5);y乙=;(3)小时;【解析】(1)根据图可得出总工作量为370件,根据图可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0t2),y=cx+d(2t5),将点的坐标代入
29、即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案【详解】(1)由图得,总工作量为370件,由图可得出乙完成了220件,故甲5时完成的工作量是1(2)设y甲的函数解析式为y=kt(k0),把点(5,1)代入可得:k=30故y甲=30t(0t5);乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,当0t2时,可得y乙=20t;当2t5时,设y=ct+d,将点(2,40),(5,220)代入可得:,解得:,故y乙=60t80(2t5)综上可得:y甲=30t(0t5);y乙=(3)由题意得:,解得:t=,故改进后2=小时后乙与甲完成的工作量相等【点睛】本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.24、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率